
1

State Representation Selection for
Mapless Autonomous Navigation with

Deep Reinforcement Learning
Alexandre G. Caldeira, Kevin B. de Carvalho, and Alexandre S. Brandão

Abstract—Mapless autonomous navigation is an open problem within Robotics, with ample academic interest and wide market growth
expectations. In this task, an agent must navigate the environment safely and reliably achieving a final state, by selecting appropriate
actions. Deep Reinforcement Learning methods, with focus to Double Deep Q-Networks, have shown efficient results above
human-level in this task. However, most methods currently require manual state modeling, and there is no consensus to the optimal
state representation given a desired performance. We propose a framework towards fine-tuning depth state representation for
task-related metrics. Ensuing empirical results, conducted in simulated environments, suggest that averaging depth samples as a
discrete set of states converges , with the trade-off that safety reward shaping must be rigorous. Applications and improvements are
proposed and the code, data and trained models are made open source.

Index Terms—Deep Reinforcement Learning, Mapless Autonomous Navigation, Depth Sensor State Representation

✦

1 INTRODUCTION

AUTONOMOUS navigation is an open problem within
the growing demand for autonomous vehicle appli-

cations. Currently available solutions range from reactive
to deliberative strategies, and are based on how much - if
any - information is known a priori about the environment.
Therefore, the main goal is to safely and reliably travel from
a starting point to a final destination without human aid.

In this regard, navigation strategies face challenges in
collision-free movement, environment modeling, sensor fu-
sion, energy management, among others. Therefore, a cen-
tral question intrinsically posed in autonomous navigation
is: given actions and sensors available for the agent, what
navigation policy reliably reaches the final destination while
complying to due safety across any environment? In short,
many answers have been posed to this question, using either
- or a mix of - deterministic and heuristic approaches.

Mapless autonomous navigation has faced momentous
advances in the recent years, fuelled by academic and in-
dustry interest. An efficient approach is the Reinforcement
Learning solution to that task. Yet, it is a field under de-
velopment such that different methodologies have arisen to
address its shortcomings.

Evidently, most models currently depend on manual
modeling for the environment, state and action, and this
work focuses on the problem of agent state representation
modeling. As a brief assessment and introduction to this
growing field, this section presents the demands that mo-
tivated this work as well as a review of latest methods in
order to set the foundations for objectively discussing our
methodology, intent and contributions.

• A. G. Caldeira, K. . de Carvalho, and A. S. Brandão are with the Núcleo
de Especialização em Robótica (NERO), at the Department of Electrical
Engineering of the Federal University of Viçosa (UFV), Viçosa - MG,
Brazil. E-mail: alexandre.caldeira@ufv.br

This work has been supported by CNPq, CAPES, FAPEMIG and MCTI.

1.1 Context and Motivation

Autonomous navigation technology, with its diverse ap-
plications, is a rapidly evolving field that holds significant
potential for growth across various sectors. In the realm
of e-commerce and warehousing, autonomous systems can
enhance logistics efficiency by autonomously navigating
warehouses, picking, and packing orders [1].

In the agricultural sector, autonomous navigation is
being utilized for tasks such as planting and harvesting,
thereby increasing efficiency as agriculture becomes increas-
ingly mechanized [2]. Lastly, in the field of space explo-
ration, autonomous navigation systems are being used for
exploration and surveying celestial bodies [3].

1.2 Deep Reinforcement Learning

An intersectional problem in Robotics is the inherent
dynamics of real world environments, which currently chal-
lenges research efforts for generalized solutions, especially
in the task of autonomous navigation strategies. One effi-
cient mathematical framework for representing the chain
of decision-making related to navigation is the Markov
Decision Process (MDP). Originally published by Richard
Bellman in 1954 [4], MDP is a method of describing a chain
of decisions as a directed graph where each node represents
a state or action, and each edge describes the probability
that an action will lead to a state.

Thus, MDP proposes using dynamic programming to
determine a policy such that despite partly random con-
nections between states and actions, decisions can be made
to reach a desired final state. An important assumption in
MDP is that the environment is a random process where the
future results depend only of the current states, disregarding
the past ones.

2

In this context, Reinforcement Learning (RL) serves as
a methodology for computing the optimal policy based on
expected results for each possible action in a given state. The
term ”Reinforcement” arises from the fact that this expected
result is consolidated as an objective function known as the
reward function, which inhibits or encourages decisions.
Namely, by defining a finite or infinite set of states S and
actions A, a “Q-value” is estimated as the long term results
of each action-state pair, based on a task or process-related
definition of the reward function [5], [6].

As such, Q-Learning is an algorithm within RL that
represents the map Q : S −→ A as a matrix to be computed
with optimization methods. Then, selecting the maximum
Q(s, a) is a policy that ensures reaching the desired state
using a critical path within the MDP process graph. This
yield or overcame human-level decision making in various
tasks, gaining traction in both industry and academia.

However, in close similarity to the trade-off of perfor-
mance versus data sample size between Random Forests
and Deep Neural Networks [7], Q-Learning suffers from
tendencies to overfit, resulting in limited performance in
complex or dynamic environments [8]. In this context, the
Deep Q-Network (DQN) [9] was the first neural network
model used to succesfully estimate Q(s, a) and overcome
human performance on tasks, which also resulted in a solu-
tion to the limited performance of tabular Q-Learning. Re-
cent developments in DQN have presented strong evidence
to the safety, consistency and efficiency of this approach
when compared to Q-Learning [9].

DQN tends to overestimate Q-values due to its method
for computing losses for gradient descent. In order to con-
verge, the DQN θ network computes its loss as:

Loss(θ) = E
[(
r + γmax

a′
Q(s′, a′, θ)−Q(s, a; θ−)

)2]
r : is the reward for the current state
γ : is a discount factor to future rewards

a, a′ : are the initial and next actions
s, s′ : are the initial and next states

where θ is the network for estimating Q, while θ− is a
copy of θ made before the current training. This difference
between the a priori (Q(s, a; θ−)) and a posteriori (Q(s′, a′, θ))
reward estimation is known as Temporal Difference (TD)
error.

The DQN method for computing the TD error results
in systematic overestimation of rewards, and an approach
to solve this issue was provided by Hado van Hasselt [10],
proposing that two networks are used in the learning pro-
cess, entitled the Double Deep Q-Network (DDQN) method.

In DDQN, one network is trained and used to estimate
Q-values in order to select actions, and will be regarded in
this paper as the ”Selector θ” network. Another network,
named here as the ”Evaluator θ−”, is used for estimating
more accurate Q-values a posteriori, such that the DDQN
loss equation is given by:

Loss(θ) = E
[(
r + γQ(s′, a′(θ); θ−)−Q(s, a; θ)

)2
]

a′(θ) = argmax
a′

Q(s′, a′; θ)

such that the Selector θ chooses both the current and next
actions (a, a′(θ)) but the Q-value of next action is computed
by Evaluator θ−. This Q-value evaluated by θ− is then
subtracted from the Q-value originally estimated by Selector
θ, computing a more stable TD error, thus also a more
stable loss and convergence. Similarly to DQN, in DDQN
the Evaluator θ− is never trained, only copied from Selector
θ after a chosen amount of training episodes.

In practical terms, this means that errors by Selector θ are
computed comparing its a priori Q-value with the a posteriori
Q-value estimated by an older copy using the originally
chosen actions, reducing overestimation. DDQN has shown
better results than DQN in terms of training length in time
as well as resulting performance, and was therefore selected.

1.3 State Representation in DRL

Despite the compatibility of most DRL algorithms with
discrete sets of states and actions, there have been efforts
to extend this to continuous state and action spaces. This is
particularly important for depth-based sensors such as Light
Detection and Ranging (LiDAR) instruments and RGB-D
cameras, which provide continuous state spaces. Larger
state spaces incur in more possible Q-values, leading to
longer training in DRL, however there is no consensus to
the minimum optimal depth state representation [11], [12].

In terms of similar works, different applications have
used DDQN, and even compared DDQN and DQN per-
formance in the task of mapless autonomous navigation [8],
[13], [14]. However, these do not address the problem of
state representation adjustment, defining a larger state space
then our work, despite the authors addressing them as low-
dimensional, as well as different agents and actions [15],
[16], [17]. Previous works in similar applications have used
DRL for ground and aerial unmmaned vehicle navigation
successfully, as well as in the of context path planning
and autonomous object handling [18], [19]. These also do
not regard the problem of state representation, focusing on
the task fulfillment rather then discussing state modeling
objectively.

1.4 Goals, Contributions and Impact
Currently, to the best of the authors’ knowledge, there are

no other works objectively discussing the impacts of depth
state representation in the performance of DRL agents. Clos-
ing this gap with strong evidence enables better informed
modeling for future works in the regard of minimum sens-
ing required for convergence as well as expected perfor-
mance in both training and testing. Our contribution is
threefold, and lies in (i) a state representation method is se-
lected based on the best performing DRL model for mapless
autonomous navigation, therefore laying (ii) a framework
for perfomance-oriented state representation comparison
and (iii) training convergence and test performance trade-
offs between different representation methods. This enables
and fuels further work towards analytically deriving the
minimum optimal state representation for a given task in
DRL. All datasets and models used or produced in this work
are made Findable, Accessible, Interoperable and Reusable
(FAIR), providing also open source code for future replica-
tion, following best practices [20], [21].

3

2 THE SIMULATION SETUP

This section describes a replicable and flexible commu-
nication, agent, sensing and environment definitions used
for training and testing our models for analyses. The infras-
tructure for testing the autonomous agents was established
through the selection of open source tools, guided by suc-
cessful related work and previous results from our lab [18].

2.1 Communication framework

Robot Operating System (ROS) is an open source frame-
work that is widely used in both academic and industry con-
text for the development and deployment of autonomous
agents. At its core, ROS functions as an automated and
structured message broker middleware over TCP connec-
tions. This allows publishing and listening to different nodes
that may represent sensors, robots, back-end services, auto-
mated models or any other piece of hardware with internet
connection. Nodes have topics, messages that represent
their capabilities such as the odometry sensors of a robot,
or velocity commands that can be published to an agent,
and so forth for different contexts.

This structure grants ROS great flexibility and inter-
operability, allowing seamless transition of models, agents
and sensors: all the code needs to assure is that the cor-
rect topic is being read or published over the network,
regardless of what hardware receives or sends the topic.
Moreover, this means that changing the selected agent or
sensor, even migrating from simulations to a real envi-
ronment is made possible by ROS with hardware-agnostic
communication and code development. The code for the
setup described in this section, and further sections, was
made publicly available in the following GitHub repository:
https://github.com/Alexandre-Caldeira/sia DRL 2023 .

2.2 Environment, agent and sensor

Applying ROS as a communication framework on the
open source Gazebo physics simulator enables automating
computationally expensive simulations, which also required
building different environments containing obstacles for
avoidance by the agent. To implement this, we select a
widespread-use ground robot and 2D-LiDAR, similar to
ubiquitous equipment from academic publications and in-
dustry applications in the field of Robotics.

2.2.1 Simulation Environments

Three simulation environments were designed for map-
less navigation simulations to train a model and measure
its performance in new territory. Figure 1 illustrates these
environments, containing obstacles of varying shapes, in
different positions, orientations and distances from each
other. Environment 1 is shown in Figure 1, at the top-left
corner, featuring one base point location where the agent
starts each simulation (B1), as well as two goal locations
(G1) and (G2). The goal (G2) is designed for verifying that
the agent did not overfit and memorize the path to (G1),
since only (G1) will be used in training.

Fig. 1. Simulation environments for training the agent and testing its
performance, where starting bases are shown in blue and ending goals
are indicated in red.

In the bottom of Figure 1, Environment 2 similarly shows
a starting point (B2) and two different goal points (G3) and
(G4), that will be used to determine whether the agent is able
to navigate in a larger, previously unseen map after being
trained. Finally, at the top-right corner of Figure 1 displays a
final base point (B3) and goal point (G5), in a room identical
in size to Environment 1, however containing no obstacles.
The purpose of Environment 3 is to validate that the agent is
able to navigate environment without reference points from
obstacle shapes.

Pioneer 3-DX is a ground robot designed by Adept
Mobile Robots, capable of achieving 1.2 m/s in linear ve-
locity and 300◦/s angular velocity. It has two front wheels
with differential drive motors, and a third stabilization non-
controllable back wheel. The model for this robot is available
in Gazebo and a ROS-based communication handler class
was developed for measuring the position and orientation
of the agent in the environment, as well as for sending linear
and angular velocity commands.

As for the sensing unit, a 2D-LiDAR depth measurement
instrument available publicly for use in Gazebo was chosen.
Its measurements are returned within ROS communication
with a 270◦ field of view, which is reduced in this work to
727 measurements in a 0 to 5-meter range, from 0 to 180◦,
centered at the front of the agent.

3 METHODOLOGY

Given the definition of agent, environment and sensor,
the next step for developing an autonomous navigation
strategy is defining a model to encompass safe and reliable
solutions to the task. This section presents our proposal
for collecting and comparing results of training and test-
ing agents under Double Deep Q-Network (DDQN) mod-
eling with different Depth State Representation Methods
(DSRMs).

4

Environment representation using depth sensors is a
topic that currently lacks academic consensus in both real
and simulated settings. This uncertainty extends to deter-
ministic and heuristic models, as noted in the literature [22].
In this study, we aim to pave the way for performance-
driven representation modeling decisions, focusing on au-
tonomous navigation with DDQN. Our methodological ap-
proach is designed for repeatability across various methods,
thus contributing to a more extensive body of evidence,
which we hope will aid in the eventual determination of
optimal environment representation based on sensor data
for specific desired metrics.

In the training environment, as shown in Figure 2, the
initial position and orientation are defined for the agent
training, seen also as (B1) in Figure 1. Here, a depth sensor
measures the distance between the agent and objects within
the environment, which must be modeled to - ideally - en-
sure autonomous navigation with safety guarantees. Figure
3 displays the complete readings of the depth sensor in this
state, covering a range of 180 degrees centered in front of the
agent and collecting 727 measurements within a 0 to 5-meter
depth range.

Furthermore, Figure 3. separates the readings into 4 sec-
tors, each spanning 46 degrees on the topmost image. Below,
Figure 3 similarly presents the same readings divided into
10 intervals of 18 degrees each. A comparative analysis
of the content within each sector in Figure 3 reveals that
different details captured within the same initial measure-
ment. Specifically, Figure 4 showcases sector #2 from the
topmost image in Figure 3 and the 4th sector on the lower
image, capturing the edge of the wall through the collected
measurements and the histogram of this sector.

Definition 3.1. Depth State Representation Methods:
DSRMs are quantizations of the sensor sample distribution
of a number of sectors by a statistical measure. In our work
we selected the mean, mode, and the minimum value of the
twentieth percentile, henceforth referred to as ”soft min”,
as DSRMs to be used for 4, 5, 6 and 10 sectors.

Notably, when comparing the readings in Figure 4 it be-
comes evident that the same edge, when quantified through
different sampling, results in distinct measurements of the
same environmental phenomenon. Consequently, this study
proposes defining the agent’s state based on the separation
of LiDAR measurements into 4, 5, 6, and 10 sectors, using
the mean, mode, and ”soft min”. Ensuing sections will then
describe how, by varying the DSRM, the number of states
and their rendition of the environment result in differently
shaped DDQN models to be trained and compared in tests.

3.1 Double Deep Q-Network Model

In order to model the mapless autonomous navigation
task as a MDP for solutions with DDQN, states and actions
must be clearly defined for the agent, in order to set pa-
rameters for the network architecture and the rewards that
will inhibit or encourage specific behaviors related to the
task. This section defines discrete sets of possible states and
actions, a neural network architecture compatible with these
sets, and finally defines rewards, based on the task.

Fig. 2. Depth scans are selected from -90◦ to 90◦, centered in front of
the robot, and split into 4 sectors with equal sample size.

Fig. 3. LiDAR depths scans are split into 4 and 10 sectors respectively,
resulting in sample sizes in each sector for the same measurement.

Fig. 4. Selecting sector #2/4 and #4/10 demonstrates that the same
edge on the wall (seen in Fig. 2) results in varying distributions and
therefore different mean, mode and soft min values.

5

3.1.1 State and action spaces

Building upon the DSRM definitions, the states that the
agent uses to perceive the environment are defined as a dis-
crete set of numeric values. Moreover, in order to encourage
the agent to be oriented towards the goal, an extra goal-
orientation directional state So is defined by splitting the
depth agent orientation into 6 states. Namely, an integer is
used to represent whether the goal is behind, or in one of
five directions in front of the agent.

Definition 3.2. So: the goal-orientation directional state, is
designed as:

So =
{
Sback, S[−90,−53◦], S[−54,−17◦],

S[−18,17◦], S[18,53◦], S[54,90◦]

}
= {0, 1, 2, 3, 4, 5} ∈ N1

such that, So = 0 if the goal is behind the agent, So = 1 if
the goal is at the LiDAR angle interval between [−90,−53◦],
and so on for the other intervals.

Definition 3.3. Sd: the set of depth states Sd is modeled as
a discrete set of sectors with 4, 5, 6 or 10 elements, each of
which are real numbers computed with a given statistical
measure, composing a DSRM: Sd ∈ R{4,5,6,10}.

Finally, the complete state space for the agent is de-
fined as the union of the set of DSRM samples and goal-
orientation directional state: S = Sd ∪ So.

Agent Pose:

{
ξ = [x, y]
ψ = arctan(y/x)

(1)

Therefore, three actions are selected for the agent to
navigate the environments. Namely, the agent can either
move straight forward with linear velocity, or make a soft
curve to its left or right, composed by a linear and angular
velocity. Thus, we define the action space as a discrete set of
three actions, mathematically given by:

A =

{ aright = (ξ̇ = 0.2 m/s, ψ̇ = −0.4 rad/s),
aforward = (ξ̇ = 0.4 m/s, ψ̇ = 0 rad/s),
aleft = (ξ̇ = 0.2 m/s, ψ̇ = +0.4 rad/s)

}
(2)

Thus, the agent action and state spaces are formally
defined, where the action set is A ⊂ R3×2 and the state
set is S ⊂ {R{4,5,6,10}+1 ∪ N1}.

3.1.2 DDQN Architecture

In terms of neural network architecture, a shallow multi-
layered perceptron has been shown to yield sufficient per-
formance, and was thus selected as minimal architecture in
this work. Namely, it is defined as the sequential application
of activation functions of inputs multiplied by weights and
biases matrices, representing the oriented graph for the
network, shown in Figure 5.

In this architecture, the input state s is processed through
three fully connected layers with the ’Leaky’ ReLU activa-
tion function. The first layer (θ1) maps the input to a 64-
dimensional hidden representation, the second layer (θ2)

further transforms this representation in a 64-dimensional
space, and the third layer (θ3) maps it to a 3-dimensional
output representing the Q-values for each of the 3 available
actions. Mathematically, outputs from the network seen in
Figure 5 are given by:

Q(s, a) = fL-ReLU (θ3 · fL-ReLU (θ2 · fL-ReLU (θ1 · s))) (3)

where:

s : Input state vector of size {4, 5, 6, 10}+ 1

a : Action vector of size 3

θ1 : Input weights, shaped ({4, 5, 6, 10}+ 1)× 64)

θ2 : Hidden layer weight matrix, shaped (64× 64)

θ3 : Output layer weight matrix, shaped (64× 3)

fL-ReLU : ’Leaky’ Rectified Linear Unit activation

This architecture learns to estimate Q-values for state-
action pairs, therefore computing the expected sum of future
rewards for selecting actions in mapless navigation.

3.1.3 Reward function shaping

The reward function was modeled based on reliability
and efficiency requirements for the task of autonomous
navigation. In detail, five rewards are presented below,
composing the total reward for any given new state after
acting.

Definition 3.4. Rdist: distance reward, is a reward was
given based on how closer the agent is to the goal at
each iteration of an episode. The reward fraction Rdist is
calculated as:

Rdist(i) = kRdist
· |Dstart −Di|

Dstart
(4)

where the initial and current distance to the goal are given
by:

Dstart = ∥ξstart − ξgoal∥
Di = ∥ξi − ξgoal∥

such that the reward for staying at the starting position
is null and increases as the agent reaches the destination
in every iteration step i within an episode. The constant

Fig. 5. A fully connected network is used to estimate Q-values for each
of the 3 possible actions, given a state.

6

kRdist
is a free parameter that was set to 80 analytically,

to yield null rewards after a certain number of iterations,
related to the negative reward Rsteps. Note that, because of
the modulus function, this reward does not inhibit straying
further from the goal, which is addressed later in Rsteps.

Definition 3.5. Rcol: collision reward, is a negative reward
built for inhibiting the agent from navigating close to ob-
jects, other environment components or crashing. For each
sector, the depth sample distance in each iteration (ds,i) is
discretized as close (≤ 0.5 m), acceptable (≤ 1, 3 m) or safe,
and negative rewards are attributed to each case:

Rcol(i) =
Nsectors∑

s=1

−100, if ds,i ≤ 0.5 m
−2, if 0.5 < ds,i ≤ 1.3 m
−1, if ds,i > 1.3 m

 (5)

Definition 3.6. Rsuccess: success reward, is a was given for
reaching the vicinity of the goal. Numerically:

Rsuccess(i) =

{
kRsuccess

, if Di ≤ dreach
0 , if Di > dreach

(6)

where ksuccess is a free constant parameter, set to 20. The
minimal distance from the agent to the goal - used to
consider the episode a success - is defined as dreach. It is
also a free constant parameter that was set to 0.5 meters in
our simulations.

Definition 3.7. Rsteps: steps reward, is a negative reward
received for each iteration, thus encouraging the agent to
minimize the number of steps taken to finish its navigation.
This reward was computed as:

Rsteps(i) = −ksteps · i (7)

were ksteps is a constant positive free parameter, set analyt-
ically to 2, such that a reward identical to a collision would
be given for every step after iteration number 50.

Definition 3.8. Rdir : goal direction reward, is a reward was
proposed for encouraging the agent to align its direction to
the goal by using the goal orientation state. If the orientation
state So is aligned to the goal a positive reward is given, and
a negative reward is received otherwise:

Rdir(i) =

{
−kdir,1 , if So ̸= 3
kdir,2 , if So = 3

(8)

where So is the goal orientation state present in all methods,
kRdir1 is a positive free parameter set to 3, and kRdir2 is
a positive free parameter set to 10 to match other reward
amounts.

Finally, the total reward for each iteration of episode is
calculated as the sum of the five previous reward. Therefore,
a total reward:

RT (i) = Rdist +Rcol +Rsuccess +Rsteps +Rdir

was given after reaching a new state, at each iteration
sequence of action selection after a state observation.

3.2 Algorithm for Training and Testing

Following the definition of the training and testing en-
vironments, using the agent states and possible actions, an
algorithm was defined for training the DDQN model. In
detail, the learning phase is split into training and validation
where the convergence of the model for each given DSRM
is analysed.

In DRL, mapless autonomous navigation is achieved
by means of action selection based maximizing expected
rewards. That is, in practical terms, selecting the action that
has the highest Q-value for a state-action pair and therefore
the highest expected rewards.

In Figure 6, the complete loop for autonomous naviga-
tion is shown, where the agent perceives the environment
through its DSRM, generating a state s. Inputting this state
into the Selector network computes Q(s,a) for each action
as outputs, and selecting the output with the highest Q-
value results in choosing one of the three possible actions.
At each decision, the agent has an ϵ ∈ [80, 0.15] probability
of choosing a random action instead of the network output,
a method known as ϵ-greedy for balancing exploration and
exploitation.

This incurs in interaction with the environment by mov-
ing, which leads the agent to its next state s’. This set of
state, action, new state and the Q-values (s,a,s’,Q) is then
saved to a memory buffer at every iteration, storing up to
50k iterations in our particular algorithm.

Definition 3.9. Episode: environment navigation sequence
of at most 60 iterations of action selection based on Q-value
estimation from the current state. Episodes may be shorter
than 60 iterations - also named steps - in case of success or
collision.

After each 10-episode interval, the simulation is paused
and the agent enters the Training loop, that is perscribed
within the dashed area in Figure 6. In this stage, each record-
ing from the memory buffer has its s’ (next state) inputted
into the Evaluator θ−, thus estimating future rewards from
its outputs Q−.

Then, these estimated future rewards from the Evaluator
θ− are subtracted from the rewards estimated originally by
the Selector θ, resulting in a squared error that is used as

Fig. 6. A Selector network is trained for the mapless autonomous naviga-
tion task, supported by a less-often updated Evaluator network (DDQN).

7

loss function for applying gradient descent to the Selector θ.
Effectively, this loss represents the TD error, and is used for
correcting the reward expectations of the Selector θ. Next,
the parameters for the Evaluator θ− are updated by copying
the newly-trained Selector θ as shown on the right side
of Figure 6. Finally, the simulation resumes to navigation,
using only the Selector θ for decisions, and applying the
Evaluator θ− only for the training loop.

This process of autonomous navigation lasts for 25k
episodes - iteratively training at each 10 episodes - at
which point the training process is interrupted regardless
of its performance. Note that this training process is used
for 25k episodes for each specific DSRM, resulting in 12
different models: one for each pair of number of sectors (4,
5, 6, 10) and sampling method (mean, mode, ”soft min”).
The code for the algorithm was made available publicly
in a GitHub repository: https://github.com/Alexandre-
Caldeira/sia DRL 2023 .

3.2.1 Training hyperparameters

During the training phase, the application of gradient
descent for the learning convergence of the Selector θ re-
quires some optimization strategy. In this work, the adap-
tive moment estimation “Adam” optimizer was selected
[23], with a Exponential Step Learning Rate, both available
publicly for use in Pytorch, in accordance with the original
publication and compatible with the DDQN Arquitecture
implementation from Section 3.1.2.

Mathematically, the StepLR function is a piecewise expo-
nential decay method for the learning rate hyperparameter
in neural network training. Its update rule in the present
work is defined as αstart = 10−3, αend = 10−6,Nupdates =
Nepisodes × 0.7, with

αdecay =

(
αend

αstart

) 1
Nupdates

(9)

where the total number of episode Nepisodes is 25k, and the
definition of initial and final learning rates (αstart, αend)
were chosen empirically.

Similarly, the ϵ parameter related to random exploration
of state-action pairs decays exponentially across training,
and is defined as:

ϵ(Episode) = 80 · 0.99975(Episode) (10)

such that the agent initially has an 80% probability to choose
random actions, decaying up to

ϵfinal = 80 · 0.99975(25k) = 15.43%

as training progresses. This training process helps adapt the
learning rate during training to improve the convergence
and stability of the model, as well as ensures that explo-
ration and exploitation takes place according to ϵ-greedy.

3.2.2 Validation strategy

During training, it is common and standard practice to
validate learning with neural networks by applying a new
set of data that has not been previously seen and thus
mirrors the current ability of the network to answer the

given task. In this work, 10 episodes were used as validation
at every 100 episodes of learning.

In other words, after every 100 episodes of data collec-
tion and training, the Selector network was put to validation
for 10 episodes, where its performance was saved. Based on
the success and collision rate during validation, in tandem
with the rewards received, it is thus possible to validate
whether or not the model has converged. Note that data
from validation is never used for training but serves for
convergence analysis.

3.2.3 Testing strategy

After training is complete, each model (for each DSRM)
is put to test in order to compare performance based on the
previously defined metrics. During this phase, no training
is allowed, and only the Selector θ is used for navigation.

Sequentially, 1k episodes in each one of 5 tests were
performed for each of the 12 DSRMs, targeted at reaching
the five goals presented in the simulation environments
(Figure 1). Specifically, the tests were conducted with the
following pairs of bases and goals:

Test 1 - Environment 1 : (B1) −→ (G1)

Test 2 - Environment 1 : (B1) −→ (G2)

Test 3 - Environment 2 : (B2) −→ (G3)

Test 4 - Environment 2 : (B2) −→ (G4)

Test 5 - Environment 3 : (B3) −→ (G5)

Test 1 mirrors the validation steps in training, whereas
Test 2 verifies that no overfit occurred, as they are set at the
training Environment 1. Test 3 and 4 check the resulting gen-
eralization achieved by the model, since they are set in an
unseen and larger Environment. Finally, Test 5 regards the
ability of the model to minimize steps towards reaching the
goal, as Environment 3 is similarly shaped to Environment
1, but contains no objects.

3.3 Performance Metrics for Analyses

Based on similar literature, a selection of metrics was
used for defining the success and collision rate, as well as
measures of safety and energy efficiency during navigation.

Definition 3.10. TDT: Total Distance Traveled, is a measure
of energy efficiency based on path length. The sum of the
distance travelled in each iteration results in the TDT over
an episode, and is defined as:

TDT(Episode) =
Niter∑
i=2

∥ξi − ξi−1∥ (11)

where ξi and ξi−1 are respectively the current and last
positions of the agent at each iteration step.

Definition 3.11. SR: Success Rate, is the average of the
amount of episodes where the agent reaches the vicinity of
the goal. The Final Distance To Goal, a support measure, is
defined as:

FDTG(ξF , ξG) = ∥ξF − ξG∥ (12)

8

Fig. 7. Rewards results are shown for each DSRM in terms of sampling and sector number, measured during validation loops within the training
stage. Initial rewards are mostly negative, arising from the collision and step reward functions, and converge to positive values as the model learns
to succeed in collision-free mapless navigation. Note that mode10 DSRM fails to converge, reaching a learning plateau at -200 reward points.

where ξF and ξG are respectively the agent final position
and the position of the current goal. Based on the agent’s
FDTG, the Success Rate is counted and averaged over
episodes of each DSRM as:

SR(DSRM) =
1

Nep

Nep∑
i=2

{
1 , if FDTG ≤ dreach
0 , if FDTG > dreach

}
(13)

where dreach is the minimal distance to the goal that should
be considered a Success, used as 0.5 m in this work.

Definition 3.12. MDTO: Mean Distance To Obstacles, is
a safety measure, defined averaging the minimal distance
that the agent read to objects within the environment, and
computed as:

MDTO(Episode) =
1

Niter

Niter∑
i=1

min
d∈Sd

(d) (14)

where d is the distance measured and quantized in each
state in Sd, whose size depends on the DSRM in use.

Definition 3.13. CR: Collision Rate, similarly to the SR,
is the average of the amount of episodes where the agent
collides into objects, mathematically defined as:

CR(DSRM) =
1

Nep

Nep∑
i=1

{
1, if mind∈Sd

(d) ≤ dsafe
0, if mind∈Sd

(d) > dsafe

}
(15)

where dsafe is the minimal distance 0.3 m in the algorithms
within our work.

4 RESULTS AND DISCUSSION

The algorithm for training and testing the 12 DSRMs
over 25k episodes was applied sequentially, and the present
section discusses the convergence analysis during valida-
tion loops. Next, a comparison of the performance of each
model is presented based on standard metrics, followed by
recommendation remarks for developing, improving and
applying the models from this work.

4.1 Training convergence and validation

During training, as described in Section 3.2.2, perfor-
mance data was measured for 10 episodes after each 100
episodes of training. For each of the 12 DSRMs, the reward
value for each of theses episodes is presented in Figure 7.
Each plot presents the results for a given sampling method,
comparing the results for a increasing number of sectors.
Successful model training is seen in Figure 7 as progressive
growth towards positive values. In contrast, a model that
fails to learn the task displays stagnant values over episodes,
as seen for the DSRM mode with 10 sectors.

For the every sampling method, Figure 7 shows that
DSRMs with 4 sectors reach positive rewards faster, before
8k episodes. In addition, DSRMs with 5 and 6 sectors
converged in after 15k to 20k episodes in most cases and
successfully converged. Moreover, DSRMs with 10 sectors
begin training with the most negative amount of rewards,
and required more episodes to converge than other meth-
ods. Furthermore, the DSRM “mode 10” failed to converge,
as seen on the blue line of the top-right plot in Figure 7,

Fig. 8. Success and collision rates are seen for each DSRM over 25k training episodes. Model training is shown to result in less collisions and more
successes as desired. As in Fig. 7, mode10 failed to converge as noted as low SR and high CR values.

9

reaching a plateau after 10k episodes. It is possible that
adjusting hyperparameters such as the DDQN architecture,
ϵ decay, learning rate decay, maximum number of episodes
and the episode interval between training loops may result
in convergence of the “mode 10” DSRM model.

Overall, increasing the number of sectors resulted in a
increased number of episodes for achieving stable positive
results, representing a stage where navigation is successful.
In terms of success and collision rates, similar behaviour to
the reward convergence is observed, where the colision rate
tends to 0% as the success rate tends to 100% (Figure 8) at the
same episode range where rewards converged to positive
values. In short, most DSRM converged and reached similar
final rewards, SR and CR at later episodes (20k to 25k).

4.2 Performance testing

Upon completion of the training process, each of the 12
models were applied to five tests as presented in Section
3.2.3, resulting in a total of 1k episodes of navigation in
a mix of seen and unseen base points, goal points and
environments. The mean value across all five tests was
computed in a centered rolling window of 25 episodes.
Figure 9 presents the performance achieved by each model,
where the mode of the result is shown in red and the
standard deviation is colored based on the number of sectors
of each DSRM, for ease of comparison. In addition, Table 1
presents a numerical summary of the data show in Figure
9. Therefore, in short, DSRMs using mean sampling display
consistent performance progression such that mode10 is the
best performing model, despite similarities to the softmin5
DSRM in Success and Collision Rate.

In terms of best performance, the “soft min” DSMR
with 5 sectors displayed the smallest standard deviation
across SR and CR, achieving 92% mean success rate over
all tests, despite not presenting the best TDT as seen in
Figure 9. Furthermore, this method achieved the highest
mean MDTO, meaning that the agent is able to keep a larger
distance to obstacles in general while successfully fulfilling
the task.

The second-to-best performance was achieved by the
“mean” DSMR with 10 sectors, resulting in 90% mean

TABLE 1
Median of test metrics averaged over 1k episodes for each DSRM

demonstrate that mode sampling displays the most consistent
adjustment, such that mode10 is the ideal DSRM with similar

results to the top performing model (softmin5).

DSRM Success
Rate [%]

Collision
Rate [%]

Total Distance
Traveled [m]

Mean Distance
To Objects [m]

mean4 29 67 19.66 1.29
mean5 65 34 21.23 1.31
mean6 70 28 20.41 1.30

*mean10 90 10 21.18 1.34
softmin4 30 60 27.47 1.21
softmin5 92 5 22.80 1.43
softmin6 69 22 20.07 1.20

softmin10 81 15 20.89 1.37
mode4 27 73 21.23 1.24
mode5 40 60 20.17 1.32
mode6 10 87 21.59 1.23

mode10 0 98 15.14 0.97

success rate, despite larger standard deviation when com-
pared with the “soft min5” DSRM. Regarding the “mean”
sampling method over its variations, notice in Figure 9 that
the SR and CR increases monotonically as more sectors
are added, which is not observed for other measures. In
addition, the “mean” sampling method achieved similar
mean TDT regardless of the number of sectors, but an
increasing mean MDTO as the number of sectors increases.

In relation to the “mode” sampling method, mirroring
training results, the metrics show that this method presents
the least stable performance, displaying high standard de-
viation across all measures. Also, note that the “mode6”
DSRM failed to navigate new environments (SR = 1%,
CR = 96%), despite having shown convergent behaviour
in training. Similarly, the “mode10” DSRM resulted in the
worst mean performance across all metrics, having failed to
converge during training.

Overall, the mode sampling method shows overfit be-
haviour, having low success and high collision rates. The
“soft min” sampling method achieved the top performance
across all DSRM when using 5 sectors, but has high variabil-
ity when adding or removing sectors, making it a unstable
and counter-intuitive sampling method.

Moreover, the “mean” sampling method showed very
similar results in its best performing DSRM, and sector
addition monotonically improves performance across mean

Fig. 9. Model performance in 5 tests is averaged over 1k episodes and measured on Success Rate (SR), Collision Rate (CR), Total Distance
Traveled (TDT) and Mean Distance to Objects (MDTO) from left to right. Increasing sector number resulted in SR and decreasing CR for the mean
sampling methods, while softmin and mode had varying results. The top individual performing model is softmin5, resulting in the highest SR, lowest
CR and highest MDTO, representing respectively a successful and safe model. However, mean sampling is considered the best representation
methodology following from its performance increase consistency based on sector number adjustment.

10

metric results. Note, also, that the “mean10” results yield
similar performance to the “soft min5” in all metrics, and
as expected, “mean10” displays lower TDT at the cost of a
higher MDTO.

In practice, this means that the “mean” sampling method
is a more stable DSRM to tune and has the overall best
convergence adjustment. Still, it requires more attention to
safety guarantees, since its best MDTO tends to be worse
than the best “soft min”.

4.3 Recommendations

Based on the results statistics in training and test-
ing, we discuss recommendations when selecting minimal
depth sensor representations for adjusting DDQN-based
agents. From empirical results, choosing the mean sampling
method achieves the most reliable performance for fine-
tuning DSRMs, resulting in monotonically improving met-
rics as more sectors are added. Still, the “soft min” sampling
methods can yield satisfactory results, at the cost of a less
intuitive hyperparameter tuning. The most clear trade-off is
that using the “mean” sampling method will not guarantee
the most optimal safety performance (higher MDTO when
compared with “soft min”), but yields better energy effi-
ciency with similar or identical success and collision rates.

5 CONCLUDING REMARKS

Exploring the open problem of mapless autonomous
navigation, this work presents, discusses and proposes so-
lutions to objectively adjust state representation based on
the final performance expected from the agent. Different
sampling intervals and metrics are proposed for depth state
representation, using a autonomous ground vehicle as the
agent with 2D-LiDAR sensing, and the Double Deep Q-
Network model is formally defined and applied to each
sensing strategy.

Using a relatively simple neural network architecture
and widespread-use methodology, 12 models are trained,
tested and made publicly available for usage, as well
as the supplementary material for replicating the results
and analyses. Further, evidence-based recommendations are
proposed in regard of task fulfillment, safety and energy
efficiency metrics, introducing an empirical first attempt at
finding the minimum optimal depth state representation for
mapless autonomous navigation.

Most models were able to converge in training, yet
yield different performance in terms of mean and standard
deviation of task-related metrics during tests. The ”mean”
sampling method is shown as the most stable and efficient
strategy for fine-tuning state representation, with due re-
gards to safety guarantees.

5.1 Future Works and Suggested Applications
Building upon this work, in terms of methodology, neural
network architectures with more hidden layers, different
activation functions or involving convolution may yield
even better generalization and performance. This also en-
ables tackling different tasks in sensor representation such

as sensor fusion (gathering data from multiple different
sensors of a single agent) as well as collaborative sensor
representation states (gathering sensor data from multiple
agents, [24]). Moreover, the problem of minimum optimal
representation may be studied similarly to other sampling
problems [25].

In addition, the DSRM proposal can be abstracted and
generalized by applying Representation Learning, a grow-
ing field with excellent performance since the proposal of
the attention mechanism [26], which is yet under-explored
in Robotics when compared to Natural Language Processing
(eg. Large Language Models). Moreover, in terms of appli-
cations, adding dynamic obstacles and goals represent an
important improvement for a more general solution to the
mapless autonomous navigation task in real environments.
Another important application is regarding different ground
vehicles or even unmanned aerial ones.

ACKNOWLEDGMENTS

This work has been supported by the Brazilian Ministry of
Science, Technology and Innovation (grant 56/2022), as well
as CNPq, FNDTC, CAPES and FAPEMIG.

REFERENCES

[1] H. Lee and J. Jeong, “Mobile robot path optimization technique
based on reinforcement learning algorithm in warehouse environ-
ment,” Applied sciences, vol. 11, no. 3, p. 1209, 2021.

[2] H. Wang and N. Noguchi, “Adaptive turning control for an
agricultural robot tractor,” International Journal of Agricultural and
Biological Engineering, vol. 11, no. 6, pp. 113–119, 2018.

[3] X. Liu and Y. Tan, “Feudal latent space exploration for coordinated
multi-agent reinforcement learning,” IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[4] R. Bellman, “A markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684, 1957.

[5] J. Clifton and E. Laber, “Q-learning: Theory and applications,”
Annual Review of Statistics and Its Application, vol. 7, pp. 279–301,
2020.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?”
Advances in Neural Information Processing Systems, vol. 35, pp. 507–
520, 2022.

[8] M.-F. R. Lee and S. H. Yusuf, “Mobile robot navigation using deep
reinforcement learning,” Processes, vol. 10, no. 12, p. 2748, 2022.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double q-learning,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 30, no. 1, 2016.

[11] M. S. Güzel, “Autonomous vehicle navigation using vision and
mapless strategies: a survey,” Advances in Mechanical Engineering,
vol. 5, p. 234747, 2013.

[12] B. Padmaja, C. V. Moorthy, N. Venkateswarulu, and M. M. Bala,
“Exploration of issues, challenges and latest developments in
autonomous cars,” Journal of Big Data, vol. 10, no. 1, p. 61, 2023.

[13] X. Zhang, X. Shi, Z. Zhang, Z. Wang, and L. Zhang, “A ddqn path
planning algorithm based on experience classification and multi
steps for mobile robots,” Electronics, vol. 11, no. 14, p. 2120, 2022.

[14] G. Tong, N. Jiang, L. Biyue, Z. Xi, W. Ya, and D. Wenbo, “Uav
navigation in high dynamic environments: A deep reinforcement
learning approach,” Chinese Journal of Aeronautics, vol. 34, no. 2,
pp. 479–489, 2021.

[15] N. Botteghi, R. Obbink, D. Geijs, M. Poel, B. Sirmacek, C. Brune,
A. Mersha, and S. Stramigioli, “Low dimensional state represen-
tation learning with reward-shaped priors,” in 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR). IEEE, 2021, pp.
3736–3743.

11

[16] L. D. de Moraes, V. A. Kich, A. H. Kolling, J. A. Bottega, R. Stein-
metz, E. C. da Silva, R. Grando, A. R. Cuckla, and D. F. T. Gamarra,
“Double deep reinforcement learning techniques for low dimen-
sional sensing mapless navigation of terrestrial mobile robots,” in
Intelligent Systems Design and Applications, A. Abraham, S. Pllana,
G. Casalino, K. Ma, and A. Bajaj, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 156–165.

[17] P. Zhang, C. Wei, B. Cai, and Y. Ouyang, “Mapless navigation for
autonomous robots: A deep reinforcement learning approach,” in
2019 Chinese Automation Congress (CAC). IEEE, 2019, pp. 3141–
3146.

[18] K. B. de Carvalho, I. R. L. de Oliveira, and A. S. Brandão,
“Av navigation in 3d urban environments with curriculum-based
deep reinforcement learning,” in 2023 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, 2023, pp. 1249–1255.

[19] H. Zhang, M. Huang, H. Zhou, X. Wang, N. Wang, and K. Long,
“Capacity maximization in ris-uav networks: a ddqn-based trajec-
tory and phase shift optimization approach,” IEEE Transactions on
Wireless Communications, vol. 22, no. 4, pp. 2583–2591, 2022.

[20] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne et al., “The fair guiding principles for scientific data
management and stewardship,” Scientific data, vol. 3, no. 1, pp.
1–9, 2016.

[21] B. J. Heil, M. M. Hoffman, F. Markowetz, S.-I. Lee, C. S. Greene,
and S. C. Hicks, “Reproducibility standards for machine learning
in the life sciences,” Nature Methods, vol. 18, no. 10, pp. 1132–1135,
2021.

[22] G. Chen, H. Yu, W. Dong, X. Sheng, X. Zhu, and H. Ding, “What
should be the input: Investigating the environment representa-
tions in sim-to-real transfer for navigation tasks,” Robotics and
Autonomous Systems, vol. 153, p. 104081, 2022.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[24] W. Chen, S. Zhou, Z. Pan, H. Zheng, and Y. Liu, “Mapless col-
laborative navigation for a multi-robot system based on the deep
reinforcement learning,” Applied Sciences, vol. 9, no. 20, p. 4198,
2019.

[25] M. Kohler and S. Langer, “On the rate of convergence of fully
connected very deep neural network regression estimates,” arXiv
preprint arXiv:1908.11133, 2019.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

