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Introdução
A robótica moderna depende da análise precisa do movimento de manipuladores. Um
desafio central é a ocorrência de singularidades: configurações específicas onde o
robô perde um ou mais graus de liberdade. Nesses pontos, movimentos tornam-se
impossíveis e o controle pode falhar. Este trabalho utiliza ferramentas da geometria
diferencial e da teoria das singularidades para modelar, identificar e classificar essas
configurações críticas, visando o desenvolvimento de robôs mais seguros e eficientes.

Metodologia
O presente trabalho foi conduzido sob uma metodologia de pesquisa teórico-analítica
com abordagem qualitativa. A base do estudo foi construída a partir de duas frentes
principais: uma extensa revisão bibliográfica da literatura sobre geometria diferencial,
teoria de singularidades e cinemática de robôs; e reuniões semanais com os orientadores
para a apresentação de seminários, discussão dos conceitos e validação dos resultados.
A fundamentação teórica utilizada para a análise matemática das singularidades ro-
bóticas baseia-se nos seguintes pilares:
O Grupo dos Movimentos Rígidos: A configuração de um robô é descrita por
elementos do Grupo Euclidiano Especial SE(3), que modela todas as transforma-
ções rígidas no espaço.
Grupos de Lie e Variedades: O espaço de configurações do robô é tratado como
um grupo de Lie, uma estrutura que é ao mesmo tempo uma variedade diferenciável
e um grupo algébrico, permitindo a aplicação do cálculo.
Singularidades e a Jacobiana: A detecção de singularidades é realizada pela análise
da matriz Jacobiana. Uma perda de posto nesta matriz indica que o robô perdeu graus
de liberdade, atingindo uma configuração singular.

Preliminares
Do ponto de vista da geometria diferencial,
cada par cinemático inferior corresponde a uma
superfície em ℝ3 que é invariante sob a ação
de um subgrupo específico do grupo Euclidi-
ano 𝑆𝐸(3). Esses subgrupos determinam os
movimentos permitidos de cada tipo de junta,
como rotações puras, translações ou movimen-
tos combinados e, assim, definem as restrições
do mecanismo robótico. Essas restrições de
movimento estão profundamente ligadas ao es-
tudo das singularidades: quando a composição
de várias ações de juntas resulta em uma matriz
Jacobiana com posto deficiente, o robô atinge
uma configuração singular. Ao analisar a clás-
sica ligação planar de 4 barras, seu espaço de
configuração é uma variedade unidimensional.

Segundo a teoria das singularidades, apenas três tipos de bifurcação de codimensão 1
podem aparecer localmente em sistemas genéricos de um grau de liberdade: cúspides,
tacnodos e pontos triplos.

Resultados

Considere um robô planar com dois graus de li-
berdade (2DOF), cujo espaço de configuração é
parametrizado por (𝜃1, 𝜃2), onde 𝜃1 e 𝜃2 são os
ângulos das juntas. A posição de seu efetuador
final é dada por:

𝑥(𝜃1, 𝜃2) = ℓ1 cos(𝜃1) + ℓ2 cos(𝜃1 + 𝜃2) (1)
𝑦(𝜃1, 𝜃2) = ℓ1 sin(𝜃1) + ℓ2 sin(𝜃1 + 𝜃2)

As singularidades do robô ocorrem quando 𝜃2 = 0 ou 𝜃2 = 𝜋. Como observamos, o
conjunto singular da aplicação

Φ ∶ ℝ2 → ℝ2

(𝜃1, 𝜃2) ↦ (𝑥(𝜃1, 𝜃2), 𝑦(𝜃1, 𝜃2))
é o conjunto Σ(Φ) = {(𝜃1, 0); 0 < 𝜃1 < 2𝜋} ∪ {(𝜃1, 𝜋); 0 < 𝜃1 < 2𝜋}. Assuma
um robô planar de 2 elos com comprimentos ℓ1 e ℓ2. Além disso, introduzimos o
obstáculo parametrizado por 𝛾(𝑠) = (𝑓(𝑠), 𝑔(𝑠)).
Teorema: Seguindo as suposições e notações acima, suponha que o obstáculo 𝛾
não passe pela origem. Assuma que 𝑓(𝑠) ≠ 0. O Perfil Φ(Σ(Φ)) possui dois
componentes. Se ℓ1 ≠ ℓ2, então as singularidades do perfil são mais degeneradas que
uma cúspide ordinária. Se ℓ1 = ℓ2, então Φ(Σ(Φ)) possui um componente. Quando
𝜃2 = 𝜋, nenhuma colisão ocorre.

Conclusões
Esse estudo foi fundamental para compreender o impacto prático das singularidades
no controle de manipuladores planares.
Além disso, foram identificadas duas possíveis linhas de pesquisa futuras, que podem
ser desenvolvidas em artigos específicos:

1. Análise de Singularidades Cinemáticas Induzidas por Obstáculos:
Estudar a cinemática de um manipulador planar sob as restrições impostas por
obstáculos em seu espaço de trabalho. O foco é investigar e classificar as
singularidades que emergem no espaço de configurações do robô em função da
geometria dos obstáculos, modelados como curvas no plano ℝ2.

2. Projeto geométrico do braço robótico: explorar como a escolha dos
comprimentos dos elos ou até mesmo formatos alternativos de braços poderiam
minimizar ou evitar determinadas singularidades.
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