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Introducado Resultados e/ou Acdes Desenvolvidas

Este trabalho avalia o desempenho do algoritmo K- Alhredugoo do? tdlmtensblpr]qlldqde apre§entout resultados
means em duas abordagens: execucdo sequencial melhores para datasets bindrios, nos quais mostrou que os

em CPU (scikit-learn) e paralela em GPU (CUDA C++ clusters mais puros (0,5%, pontos vermelhos na Figura 1)
com T4). Além da andlise de tempo de execucdo geram maiores acurdcias no XGBoost, chegando a a 85%, em

investigou-se a reducdo de dimensionalidade por aliuns Ccilslc?s uIEro%assl?ndo OS resultgngSTdZLo datotset orclglnol.
meio da selecdo de subconjuntos de atributos, o paraielizacao do dnr;eonts em | moclln eve.t SMpos
utilizando o indice de Gini como métrica de pureza e SStavels Mesmo. em ddidsets maiores, sendo mulito mais

validando os melhores casos com o classificador rapida que a versao sequencial.
XGBoost. Essa combinac¢do busca equilibrar eficiéncia
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usando K-means e indice de Gini, com valida¢do via
XGBoost. Além disso, buscou-se otimizar o processo
por meio de uma implementacdo paralela em CUDA
C++, tornando vidvel a andlise em casos de maior
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Figura 1: Resultados dos experimentos de reducdo de dimensionalidade para algoritmos bindrios

volume de dados. ~
Conclusoes

: p : A reducdo de dimensionalidade, transformando clusters
Material e Metodos ou Metodologlu em novos atributos, destacou caracteristicas relevantes e
aumentou a acurdcia em datasets bindrios, mas ndo
obteve bom desempenho para datasets com mais classes.
A paralelizacdo do K-means em GPU apresentou tempos
estdveis e escaldveis para casos com mais combinacgodes.

Foram testadas todas as combinacdes de trés
atributos em cada dataset, aplicando K-means, com

8 clusters, e avaliando a pureza com indice de Gini. As Assim essas abordagens podem  melhorar @
representagoes reduzidas foram classificadas com representatividade dos dados e garantir processamento
XGBoost e comparadas com classificagcdées que rdpido, equiliorando desempenho e eficiencia em
utilizaram todas as features. aprendizado de mdaquina em algumas aplicacoes.
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na busca por subconjuntos representativos.
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