
We implemented and validated the platform in three experiments with 
the Pioneer 3-DX robot: square, equilateral triangle and a 
representação discretized representation of Bernoulli's lemniscate. This 
evidenced coherence between the block program and the recorded 
trajectories. For the square, the path returned near the starting point 
(Fig. 3a/3d). In the equilateral triangle, the three sides and turns (120°) 
maintained the predicted proportions (Fig. 3b/3e). For the lemniscate, 
an "8" shaped curve with "abrupt" transitions was obtained (Fig. 3c/3f), 
with trajectory accuracy analyzed by odometry graphs. The core of the 
solution includes move and turn blocks connected in sequence, 
translating blocks → JSON → backend (Python/Flask) → ROS for 
publishing to the /cmd_vel topic (velocity commands) and state 
monitoring with the /pose topic, forming an end-to-end flow.

Blockly and ROS: A Visual Programming Interface for Robot Control

Results

Conclusions

Methodology

Bibliography

This work presents the development of a block-based programming 
platform integrated with the Robot Operating System (ROS) for mobile 
robot control. The proposed solution combines a visual programming 
interface based on Blockly and a Python backend, enabling direct 
communication with the Pioneer 3DX robot. The platform allows 
defining movement and rotation commands, as well as executing 
customized programs. Experimental validation was conducted by 
programming the robot to draw geometric figures (square, equilateral 
triangle, and lemniscate), demonstrating the platform's effectiveness in 
executing movement commands with precision and stability. This 
solution is particularly suitable for educational contexts and robotics 
experiments, offering an accessible, modular, and adaptable approach to 
robot programming.

Objectives
Develop and validate a block programming platform integrated with 
ROS1 for controlling mobile robots (Pioneer 3-DX), with modular 
architecture.

● Integrate Blockly to ROS for Pioneer 3-DX navigation control.
● Validate the platform by running geometric trajectories as a case study 

(educational proposal).
● Evaluate the platform's accuracy and usability, highlighting its 

potential for application in an educational environment.

ODS4

Pesquisa

Introduction

Guilherme S. F. Pinel, Alexandre S. Brandão e Rejane W. S. de C. Faria

Financial Assistance

Architecture (Fig. 1):
● Modular flow in 5 steps: (1) user 

assembles program in blocks; (2) 
code in JSON goes to backend; (3) 
backend publishes in ROS topics; (4) 
robot executes; (5) feedback returns 
to frontend.

Backend (Flask + ROS1):
● Converts Blockly commands (JSON) 

into ROS publications; functions: 
move_forward(distance), 
turn(angle), stop();

Middleware ROS (Pioneer 3-DX):
● Topics: /RosAria/cmd_vel (linear 

speed/ang.) and /RosAria/pose 
(odometry);

Experimental set-up (Fig. 2):
● Windows 10 notebook (Blockly on 

Ubuntu 20.04.6/WSL) connected to 
ROS Master on Ubuntu 20.04.6 PC 
(ROS1 Melodic); Pioneer 3DX on 
Raspberry Pi 3 (Ubuntu 18.04, ROS1 
Melodic).

Fig. 1: Interaction diagram of the platform with the robot.

Fig. 2: Experimental setup.

The experiments confirmed the viability of the Blockly programming 
platform integrated with ROS to perform navigation and figure 
drawing tasks with the Pioneer 3-DX; the odometry graphs showed 
good accuracy in a controlled environment and pedagogical potential 
for interactive geometry teaching. The platform achieved its objectives, 
offering an accessible and modular environment for programming 
mobile robots, with effective Blockly-ROS integration.

PINEL, G. S. F.; BRANDÃO, A. S.; FARIA, R. W. S. C. Blockly and ROS: A 
Visual Programming Interface for Robot Control. In: BRAZILIAN 
CONFERENCE ON ROBOTICS (CROS), 2025, Belo Horizonte. Anais [...]. Belo 
Horizonte, Brasil: IEEE, v. 1, p. 1-5, 2025. DOI: 
10.1109/CROS66186.2025.11066105. 


