Simposio de Integracao
Académica -

|§ Simpésio de Integragéo Académica

“Das Montanhas de Minas ao Oceano: Os Caminhos da
Ciéncia para um Futuro Sustentavel”

UFV

Universidade Federal
de Vicosa

SIA UFV 2025

Blockly and ROS: A Visual Programming Interface for Robot Control

Guilherme S. F. Pinel, Alexandre S. Branddo e Rejane W. S. de C. Faria

ODS4

Pesquisa

Introduction

Results

This work presents the development of a block-based programming
platform integrated with the Robot Operating System (ROS) for mobile
robot control. The proposed solution combines a visual programming
interface based on Blockly and a Python backend, enabling direct
communication with the Pioneer 3DX robot. The platform allows
defining movement and rotation commands, as well as executing
customized programs. Experimental validation was conducted by
programming the robot to draw geometric figures (square, equilateral
triangle, and lemniscate), demonstrating the platform's etfectiveness in
executing movement commands with precision and stability. This
solution 1is particularly suitable for educational contexts and robotics
experiments, offering an accessible, modular, and adaptable approach to
robot programming.

Objectives

Develop and validate a block programming platform integrated with
ROS1 for controlling mobile robots (Pioneer 3-DX), with modular
architecture.

e Integrate Blockly to ROS for Pioneer 3-DX navigation control.
e Validate the platform by running geometric trajectories as a case study

(educational proposal).
e Evaluate the platform's accuracy and usability, highlighting its

potential for application in an educational environment.

Methodology

Architecture (Fig. 1):

e Modular flow in 5 steps: (1) user
assembles program in blocks; (2)
code in JSON goes to backend; (3)
backend publishes in ROS topics; (4) e
robot executes; (5) feedback returns | | |
tO frontend. Publish commands (ROS topics) Response (robot data)

Backend (Flask + ROS1):

e Converts Blockly commands (JSON)
into ROS publications; functions:
move_forward(distance),
turn(angle), stop();

Middleware ROS (Pioneer 3-DX):

e Topics: /RosAria/cmd_vel (linear

—Grontend (Blockl%

Send commands (JSON)

Response (status)

Middleware ROS

|

Sends movement commands Feedback (odometry)

‘<P‘ eeeee 3DX robot>—J

Fig. 1: Interaction diagram of the platform with the robot.

We implemented and validated the platform in three experiments with
the Pioneer 3-DX robot: square, equilateral triangle and a
representacao discretized representation of Bernoulli's lemniscate. This
evidenced coherence between the block program and the recorded
trajectories. For the square, the path returned near the starting point
(Fig. 3a/3d). In the equilateral triangle, the three sides and turns (120°)
maintained the predicted proportions (Fig. 3b/3e). For the lemniscate,
an "8" shaped curve with "abrupt" transitions was obtained (Fig. 3¢/ 3t),
with trajectory accuracy analyzed by odometry graphs. The core of the
solution includes move and turn blocks connected in sequence,
translating blocks — JSON — backend (Python/Flask) — ROS for
publishing to the /cmd_vel topic (velocity commands) and state
monitoring with the /pose topic, forming an end-to-end flow.

Move forward meters
NP Clockwise « 1Y) degrees
Move forward) meters
Rotate by degrees
Move forward F¥Z3 meters
Rotate by degrees

Move forward [} meters

Move forward B meters

=7 2 Counterclockwise - Bed 120 il o

Move forward) meters

% = Y Counterclockwise = Lo f 120 L5 5o
Move forward meters

1: %21 Counterclockwise - o8 120 Joa oo

Move forward §J) meters
Rotate (oM Sl 0 by) degrees
Move forward) meters

Rotate by L) degrees
Move forward) meters

132 Counterclockwise - 01 90 Jos o

Move forward §J) meters
Rotate by £} degrees

(a) Square code. (b) Triangle code. (¢) Lemniscata code.

Displacement in XY plane Displacement in XY plane Displacement in XY plane

[m]
©
(o)
o
@
o

o
o
o
o

—

o
N

=
BN
Robot position in x [m]

Robot position in x
Robot position in x [m]
o
N

o
()
o
N

O | L’—__—/’/ | — q 0
-0.2 : . : : : : -0.2 -0.5

1.2 1 0.8 0.6 0.4 0.2 0 -0.2 1.2 1 0.8 0.6 04 0.2 0 -0.2 15 1 0.5 0
Robot position in y [m] Robot position in y [m]

o

Robot position in y [m]

(d) Square path. (e) Triangle path. (f) Lemniscata path.

Fig. 3: Blockly code implementation (top) and resulting paths (bottom) for three geometric paths: square (left), equilateral
triangle (middle), and lemniscate (right), showing the robot’s path-following.

Conclusions

The experiments confirmed the viability of the Blockly programming
platform integrated with ROS to perform navigation and figure
drawing tasks with the Pioneer 3-DX; the odometry graphs showed
good accuracy in a controlled environment and pedagogical potential
for interactive geometry teaching. The platform achieved its objectives,
offering an accessible and modular environment for programming
mobile robots, with effective Blockly-ROS integration.

Bibliography

speed/ang.) and /RosAria/pose
(odometry); . "

Experimental set-up (Fig. 2):

e Windows 10 notebook (Blockly on
Ubuntu 20.04.6/WSL) connected to { l
ROS Master on Ubuntu 20.04.6 PC
(ROS1 Melodic); Pioneer 3DX on

ROS Master - ROS1 Melodic

Raspberry Pi 3 (Ubuntu 18.04, ROS1

. Blockly
Melodic). s

Z=rr
llllllllllllllllllll
—— e

Fig. 2: Experimental setup.

% M

PINEL, G. S. F; BRANDAO, A. S.; FARIA, R. W. S. C. Blockly and ROS: A
Visual Programming Interface for Robot Control. In: BRAZILIAN
CONFERENCE ON ROBOTICS (CROS), 2025, Belo Horizonte. Anais |...]. Belo
Horizonte, Brasil: IEEE, V. 1, p. 1-5, 2025. DOI:
10.1109/ CROS66186.2025.11066105.

Financial Assistance

@ @ @CNPq

CAPES FAPEMIG

