

Simpósio de Integração Acadêmica

"Ciências Básicas para o Desenvolvimento Sustentável"

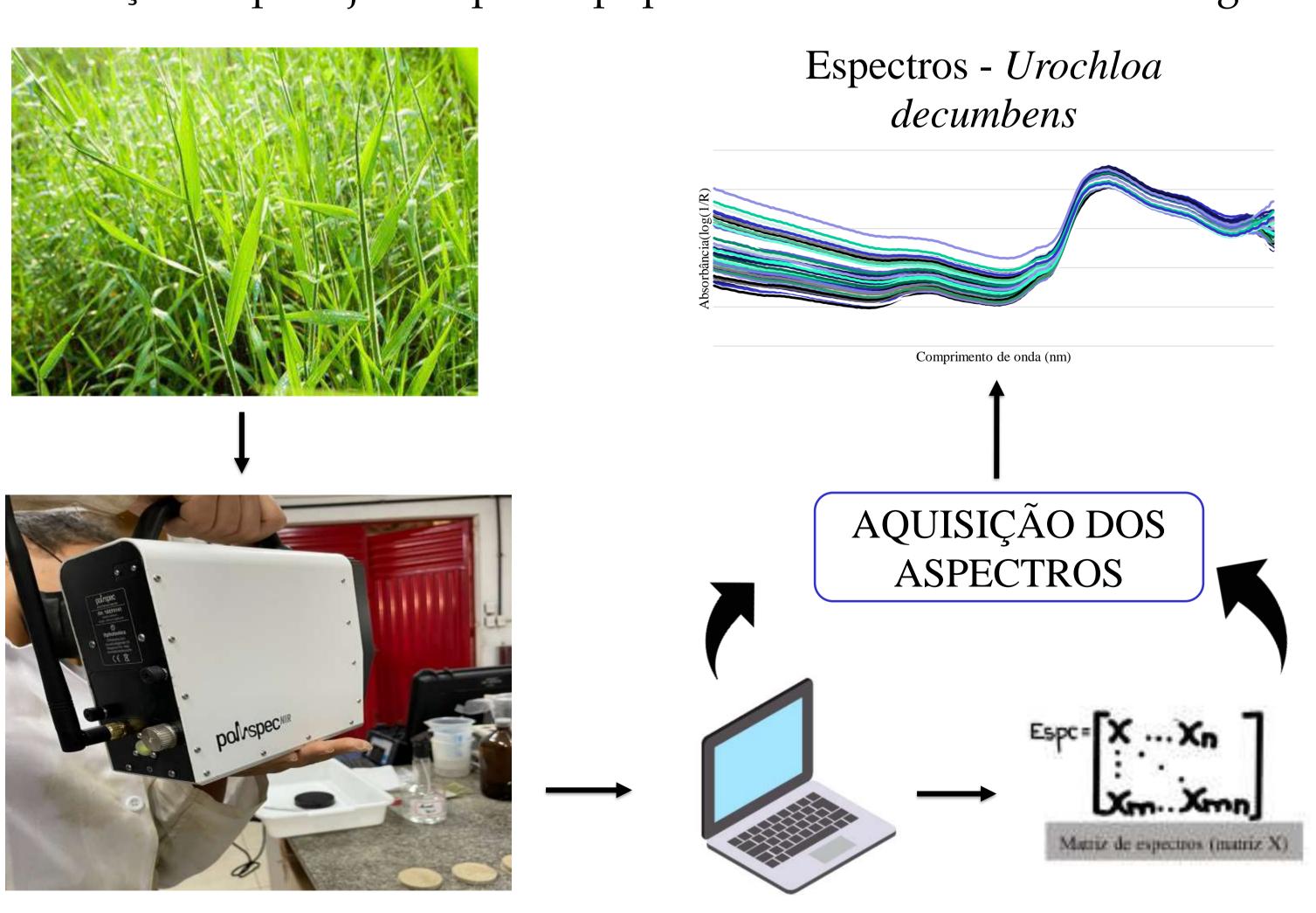
Construção e validação de modelos de regressão para predição dos teores de matéria seca, fibra insolúvel em detergente neutro e proteína bruta de *Urochloa decumbens* por NIR portátil

Lívia Moreira Gandra¹, Sebastião de Campos Valadares Filho², Nathália Veloso Trópia³, Lucas da Paixão Silva¹, Júlia Gabriela Baroni Alves¹, Éllem Maria de Almeida Matos³

Graduando(a) em Zootecnia - DZO-UFV; ² Professor titular do Departamento de Zootecnia e ³ Doutorando(a) em Zootecnia - DZO-UFV

Palavras-chave: NIR portátil, produção a pasto, Urochola Decumbens

Introdução


A produção de bovinos de corte se concentra especialmente em sistema de produção a pasto, sendo a *Urochola Decumbens* uma das forrageiras mais utilizadas em pastagens no Brasil e, portanto, é crucial conhecer a composição química desta forrageira. A espectroscopia no infravermelho próximo (NIR) têm sido utilizada na atualidade como método alternativo às análises químicas convencionas, uma vez que é um método simples, robusto e prediz de forma eficiente a composição dos alimentos fornecidos.

Objetivos

Dessa forma, objetivou-se desenvolver e avaliar modelos de regressão para predição dos teores de amostra seca em estufa a 105°C (ASE), matéria seca definitiva (MS), fibra insolúvel em detergente neutro corrigida para cinzas e proteína (FDNcp) e proteína bruta (PB) da *Urochloa decumbens* por NIR portátil.

Material e Método

Foram coletadas 56 amostras de *Urochola Decumbes* através da simulação de pastejo em quatro piquetes estabelecidos desta forrageira.

Apoio financeiro

Resultados e Discussão

Tabela 1 . Média e estatística descritiva da relação entre os valores observados e preditos de constituintes de *Urochloa decumbens*

Item	ASE^1		MS^2 PB^3		FDNcp ⁴	
	Obs. ⁵	Su+2d ⁶	Obs.	Det + Au ⁷ Obs.	Su+Det ⁸ Obs.	Su + Det
R2 ⁹		0.88		0.98	0.98	0.73
CCC^{10}		0.88		0.98	0.98	0.95
$QMEP^{11}$		0.32		8.58	0.19	1.76

¹matéria seca em estufa a 105°C, ²matéria seca definitiva, ³proteína bruta, ⁴fibra insolúvel em detergente neutro corrigido para cinzas e proteína, ⁵valores observados, ⁶suavizar e segunda derivada, ⁷detrend e auto escalonamento, ⁸suavizar e detrend, ⁹coeficiente de determinação, ¹⁰coeficiente de correlação e concordância ou índice de reprodutibilidade, ¹¹quadrado médio do erro de predição,

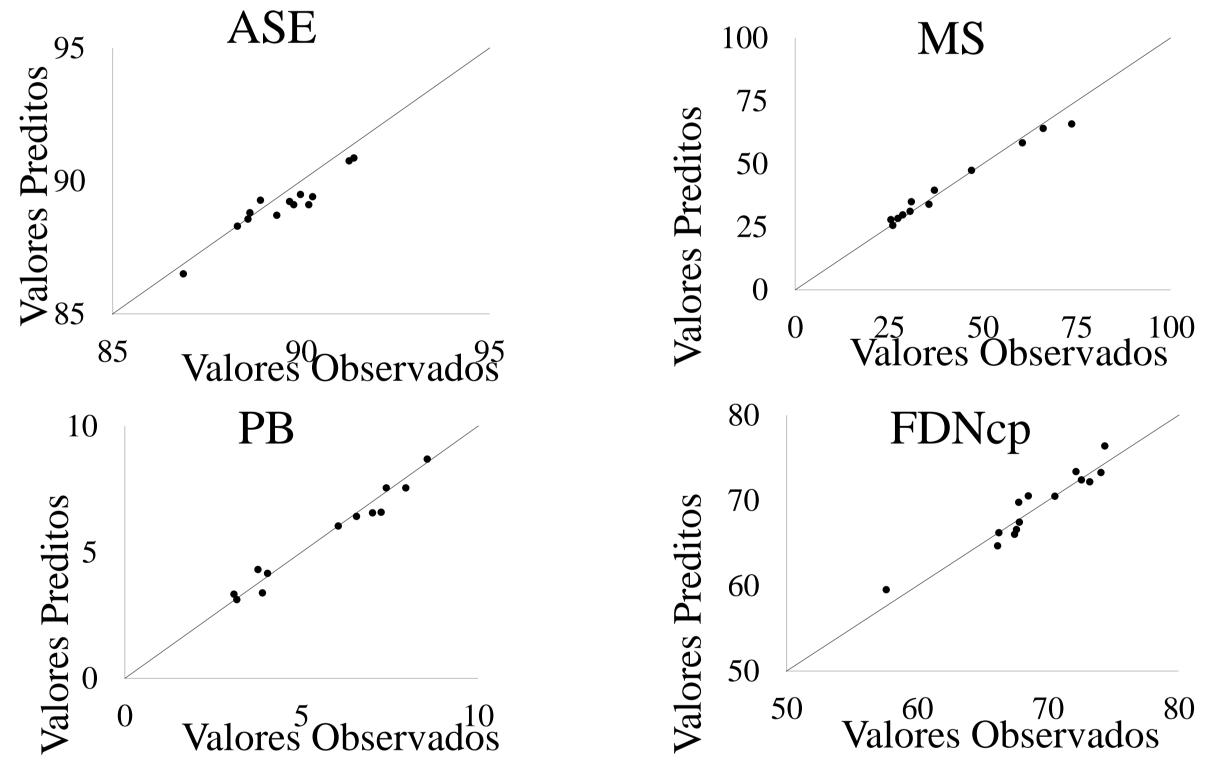


Figura 2 - Relação entre os teores de ASE (matéria seca em estufa a 105°C), MS (matéria seca , PB (proteína bruta), e FDNcp (fibra insolúvel em detergente neutro corrigido para cinzas e proteína) resultantes da validação externa, obtidos através de análises químicas tradicionais e preditos a partir do modelo construído para predição da composição química de *Urochloa decumbens*.

Conclusões

Portanto, o NIR portátil aliado a técnicas quimiométricas pode substituir análises químicas convencionais para a determinação dos teores de ASE, PB e FDNcp da *Urochola Decumbens*.

Bibliografia

DETMANN, E., SOUZA, M.A., VALADARES FILHO, S.C. Métodos para análise de alimentos. Visconde do Rio Branco: Universidade Federal de Viçosa, 214p. 2012.

Agradecimentos

