

Simpósio de Integração Acadêmica

"Ciências Básicas para o Desenvolvimento Sustentável"

SIA UFV 2023

Avaliação agronômica de cama de frango tratada com aditivos químicos

A. S. Leite (DAA/UFV; ademir.leite@ufv.br), R. B. Cantarutti (DPS/UFV; cantarutti@ufv.br.)

Palavras-chave: Nitrogênio, cama de aviário, Megathyrsus maximus, fertilidade do solo, estabilização de nitrogênio.

Introdução

- A cama de frango (CF) é a mistura da maravalha de forração do piso do aviário com as excreções dos frangos. Após o ciclo de produção na granja, a CF é utilizada como adubo orgânico na agricultura, sendo importante fonte de N.
- Bastos (2021) constatou que a aplicação de aditivos químicos à CF no aviário, incrementam os teores de N na CF final.

	Cama	1º ciclo	Cama 2º ciclo					
Aditivos	Nº de aplicação aditivos							
	1	2	1	2				
	g/kg de N (% de incremento)							
$Al_2(SO_4)_3$	18,55 (87)	24,13 (143)	21,87 (30)	31,52 (87)				
$CuSO_4$	12,50 (26)	16,20 (63)	18,97 (12)	23,02 (36)				
$FeSO_4$	14,50 (46)	15,81 (59)	19,22 (14)	22,34 (32)				
$ZnSO_4$	13,79 (39)	17,58 (77)	19,79 (17)	24,13 (43)				
Sem aditivo	9,	.92	16,87					

Objetivos

O objetivo geral foi avaliar o potencial fertilizante de camas de aviário tratadas com aditivos químicos.

Foram objetivo específicos:

- Avaliar se a CF tratada com $Al_2(SO_4)_3$ favorece a absorção do Al e compromete a produção das plantas;
- Avaliar se a CF tratadas com sulfatos de Cu, Fe e Zn, são fontes efetivas destes micronutrientes

Material e Métodos

Realizou-se um experimento casa de vegetação do DPS/UFV utilizando capim-Mombaça como planta indicadora.

Os tratamentos resultaram da combinação fatorial $(2 \times 4 \times 2) + 3$, correspondendo a: 2 CF (de 1° e de 2° ciclo de uso), 4 aditivos químicos $(\text{Al}_2(\text{SO}_4)_2, \text{CuSO}_4, \text{FeSO}_4 \text{ e ZnSO}_4)$, 2 aplicações dos aditivos (1 e 2 aplicações) e 3 tratamentos adicionais (sem aplicação de CF (s_CF), aplicação de CF de 1° e de 2° ciclo sem aditivos (0ad_CF) .

As CF com aditivos químicos em experimento conduzido em galpão de granja comercial na região de Viçosa (Bastos, 2021).

As unidades experimentais foram vasos com 8 kg de um solo arenoso, cultivado com cinco plantas de capim-Mombaça

A dose de CF foi 12,5 g kg⁻¹ (75 g.vaso⁻¹, equivalente a 18,75 t ha⁻¹. A CF junto com 20,0 g/vaso de superfosfato simples (218,3 mg dm⁻¹ de P) foram homogeneizados com a massa de solo de cada vaso e incubados por 30 dias. As doses de N aplicadas de acordo com a CF foram:

Apoio financeiro

Aditivos _	Nº de aplicação aditivos						
	1	2	1	2			
	g/vasode N						
$Al_2(SO_4)_3$	1,391	1,810	1,640	2,344			
$CuSO_4$	0,938	1,215	1,423	1,727			
$FeSO_4$	1,088	1,186	1,442	1,676			
$ZnSO_4$	1,034	1,319	1,484	1,810			
Sem aditivo	0,7	744	1,2	265			

O delineamento experimental foi de blocos casulaizados com cinco repetições

Ao longo de 120 d de crescimento foram realizados quatro cortes da parte aérea. Pesou-se a massa da matéria seca (*m*PA) e determinaram-se os teores (*te*) de N, Al, Cu, Fe e Zn. Calculou-se o conteúdo (*ct*) desses elementos na parte aérea. Apresenta-se neste trabalho a *m*PA e os *ct*N, *ct*Al, *ct*Cu, *ct*Fe e *ct*Zn acumulados nos quatro cortes.

Resultados e Discussão

Tratamento	mPA		ctN	<i>ct</i> Fe	<i>ct</i> Zn	ctCu	ctAl
		5/v	aso	••••••	mg/	'vaso	••••••
S_CF	79,13 A	a	1,085 A a	4,77	15,05	0,51 a	18,28
0ad_CF	101,18 A	a	1,138 A a	5,76 a	4,09 a	0,64 a	22,11 A a
$Al_2(SO_4)_3$	101,53	a	1,498 a	6,86 a	4,86 a	0,71 a	20,11 A a
$CuSO_4$	97,13	a	1,282 a	5,50 a	4,21 a	0,85 b	17,27 a
FeSO_4	95,96	a	1,267 a	5,68 a	5,06 a	0,68 a	19,05 a
$ZnSO_4$	80,06	a	1,106 a	5,17 a	35,66 b	0,51 b	14,87 a

Letras maiúsculas e minúsculas correspondem aos respectivos contrastes estabelecidos com a as médias em vermelho de acordo com o teste de Scheffé. Se seguirem de letra diferente o contraste foi significativo a 5% de probabilidade.

Embora as CF com aditivos tenham maiores teores de N (Bastos, 2021), tanto sem ou com aditivos ela não propiciou maior produção nem maior acúmulo de N na parte aérea do capim.

A CF com sulfato de Al, não favoreceu maior acúmulo do íon, nem comprometeu a produção do capim. O pH da cama (≈ 7,5) e a interação com moléculas orgânicas podem ter contribuído para menor a atividade do Al.

Apenas a CF com ZnSO₄ e CuSO₄ causaram maior acúmulo destes micronutrientes no capim. A CF com CuSO₄ também favoreceu maior acumulo de Zn. O pH da cama e a complexação com moléculas orgânica podem ter favorecido menor atividade do Fe.

Conclusões

No presente estudo a CF, com ou sem aditivo, não se mostrou um adubo orgânico eficaz.

O tratamento da CF com $Al_2(SO_4)_2$ não compromete o seu uso com adubo orgânico.

A CF tratada com ZnSO₄ e CuSO₄ pode ser uma fonte efetiva dests micronutrientes

Referência Bibliográfica

Bastos, R.do A. Emissão de amônia, retenção de nitrogênio e valor fertilizante de cama de frango tratada com aditivos químicos. UFV. 2021. 142p. (Tese)