

Simpósio de Integração Acadêmica

"Ciências Básicas para o Desenvolvimento Sustentável" **SIA UFV 2023**

ADSORVENTES DE FOSFATO BASEADOS EM NANOFERRITAS MAGNÉTICAS DE MAGNÉSIO SUPORTADAS EM VERMICULITA

Laura Melo F. Moreira (IC)*, Eduardo Lucas C. Silva (IC), Matheus H. P. Araújo (PG), Juliana Cristina Tristão (PQ) *laura.m.fernandes@ufv.br; Universidade Federal de Viçosa (UFV) - Campus Florestal, Florestal-MG

Palavras-chave: Ferritas de magnésio; Vermiculita; Fosfato; Adsorção

Área de conhecimento e área temática - Ciências exatas e tecnológicas - Química Inorgânica / Categoria: Pesquisa

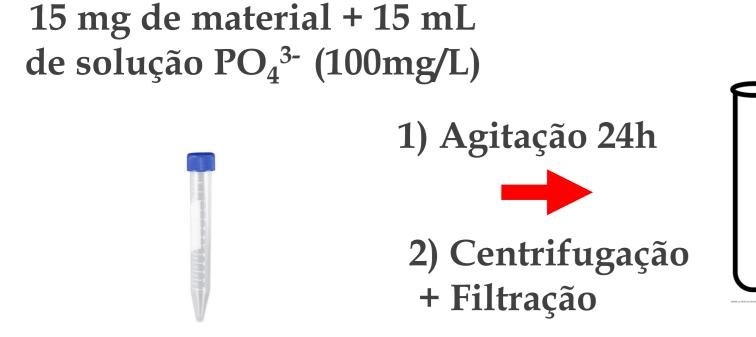
Introdução

O fósforo é um nutriente essencial para as plantas, no entanto, atividades humanas liberam quantidades excessivas desse elemento nas águas, contaminando-as e colocando a necessidade do uso de alternativas para removê-lo. A ferrita de magnésio (MgFe₂O₄) é um composto a base de óxido de ferro e magnésio, com estrutura de espinélio invertido e magnetização espontânea, e vem sendo aplicada como material adsorvente. A vermiculita expandida (VE) é um silicato que pode ser usado como adsorvente, uma vez apresenta área superficial elevada e baixa densidade, podendo ser adaptada para incorporar as ferritas.

Objetivos

Este trabalho tem como objetivo sintetizar e caracterizar MgFe₂O₄ nanoparticuladas, suportadas em vermiculita para aplicação como adsorventes de fosfato (PO_4^{3-}) em águas contaminadas.

Material e Método

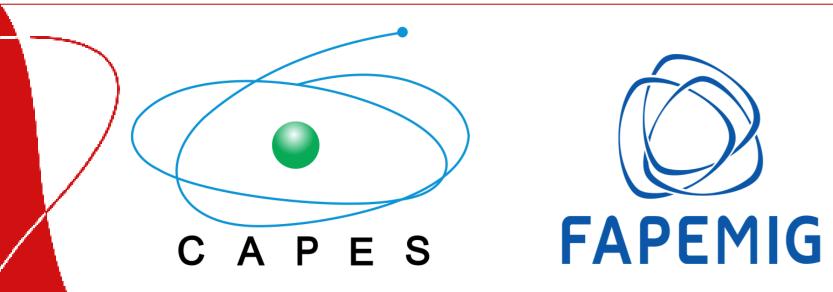

Síntese dos materiais: Ferritas suportadas em Vermiculita

Materiais a diferentes proporções e temperaturas de calcinação:

Prop	orção	Calcinado a	Calcinado a
		700°C	900°C
5%		Mg5Fe700/VE	Mg5Fe900/VE
10%		Mg10Fe700/VE	Mg10Fe900/VE
20%		Mg20Fe700/VE	Mg20Fe900/VE

***** Testes de adsorção

1) Diluição do sobrenadante



Leitura em 880 nm

O materiais produzidos foram caracterizados por diferentes técnicas: DRX, MEV/EDS, TG e Espectroscopia Mossbauer.

Apoio financeiro

Resultados e Discussão

Resultados de DRX e Mossbauer indicaram que a vermiculita teve sua estrutura mantida após calcinação e identificou a formação de ferrita de magnésio para todos os materiais sintetizados. Os materiais apresentaram magnetização espontânea a temperatura ambiente.

Imagens MEV mostraram a formação de nanopartículas uniformes e distribuídas bem com tamanhos entre 100 e 300 amostras nm, para as calcinadas e nas proporções de 5 e 10% mFE/mVE.

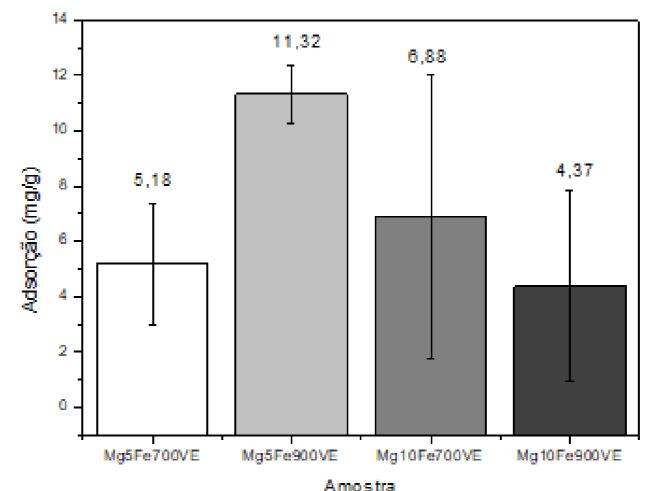


Figura 2. Adsorção dos materiais nas proporçãoes 5 e 10 %mFe/mVE.

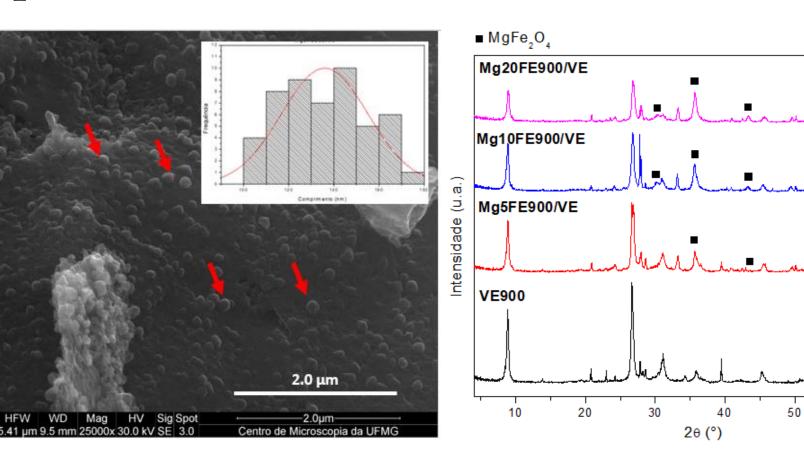


Figura 1. (a) MEV e histograma de distribuição de partículas da amostra Mg5Fe900/VE (b) DRX das amostras calcinadas a 900°C

de fosfato foram adsorções melhores para as amostras com 5%, alcançando valores iguais a 4,1 e 11,3 Mg5Fe700/VE mg/gpara respectivamente. Mg5Fe900/VE, aumento do teor de ferrita na superfície da vermiculita leva a uma diminuição da adsorção de fosfato.

Conclusões

Foram produzidas nanoferritas suportadas em vermiculita contendo 5, 10 e 20% mFe/mVE, a 700 e 900°C/1h. Os testes de adsorção indicaram que a presença da ferrita de magnésio pode auxiliar na remoção de fosfato da água. A amostra Mg5Fe700/VE apresentou o melhor resultado para adsorção, de 11,3 mg/g. Os estudos são promissores e serão aprofundados para melhor elucidar o processo de adsorção.

Bibliografia

- ¹Sharma et al., ACS Symposium Series Vol. 1238 2016 Chapter 4 113-136 -DOI: 10.1021/bk-2016-1238.ch004
- ² Li, Mingliang et al. 2021. Chemical Physics, 550. DOI: 111313. 10.1016/j.chemphys.2021.111313.

Agradecimentos

Agradeço à FAPEMIG, CAPES e CNPq pelo financiamento de bolsas e projetos concedidos ao grupo QuiTAm.