


# Simpósio de Integração Acadêmica



"Ciências Básicas para o Desenvolvimento Sustentável" SIA UFV 2023

# Comportamento produtivo de híbridos simples de milho em Coimbra-MG, 2022/23

Safra

# Lucas Ferreira de Oliveira<sup>1</sup>; Rodrigo Oliveira DeLima<sup>1</sup>; Gabriel Piacesi Rocha<sup>1</sup>; Thales Lorenzoni Entringer<sup>1</sup>; Janderson Júnior De Andrade<sup>1</sup>; Vidomar Destro<sup>1</sup>

<sup>1</sup>Departamento de Agronomia, Universidade Federal de Viçosa, \*E-mail do autor para correspondência: <u>rodrigoodelima@ufv,br</u>

Palavaras-chave: Zea mays L, produtividade, híbrido,

Área de conhecimento: Ciências Agrárias; Área temática: Melhoramento de Plantas; Modalidade: Pesquisa

### Introdução

No Brasil, terceiro maior produtor de milho do mundo, o principal tipo de cultivar de milho usado pelos agricultores é o do tipo híbrido, Os híbridos simples se destacam devido seu maior potencial produtivo e uniformidade,

### **Objetivos**

Avaliar o comportamento agronômico de híbridos simples desenvolvidos no Programa Milho-UFV, em Coimbra/MG, na safra 2022/2023,

#### Material e Métodos

Foi utilizado o delineamento experimental em blocos incompletos (DBI; látice – 7x7), e duas repetições. Os tratamentos foram compostos por quarenta e quatro híbridos simples experimentais e cinco testemunhas comerciais. Cada unidade experimental foi composta por duas linhas de quatro metros com 0,8 m de espaçamento. Os caracteres avaliados foram: dias até o florescimento masculino (FM, dias) e feminino (FF, dias); altura de planta (AP, cm) e espiga (AE, cm); produtividade de grãos (PG, kg ha-1). Os dados foram submetidos a ANOVA e teste de média.

#### Resultados e Discussão

**Tabela 1.** Resumo da ANOVA para características agronômicas: dias até florescência masculina (FM, dias), florescência feminina (FF, dias); altura de planta (AP, cm), altura da primeira espiga (AE, cm); produtividade de grão por hectare (PG, kg ha<sup>-1</sup>)

| da primeria espiga (AE, Ciii), produttividade de grao por nectare (FO, kg na -) |    |                    |                    |                      |                      |                         |  |  |  |
|---------------------------------------------------------------------------------|----|--------------------|--------------------|----------------------|----------------------|-------------------------|--|--|--|
| Fonte de Variação                                                               | GL | FM                 | FF                 | AP                   | AE                   | PG                      |  |  |  |
| Rep                                                                             | 1  | 18,00**            | 5,88 <sup>ns</sup> | 482,72*              | 126,86 <sup>ns</sup> | 17.751.755**            |  |  |  |
| Bloco/Rep                                                                       | 12 | 9,44**             | 10**               | 209,33*              | 224,09**             | 1.609.272ns             |  |  |  |
| Genótipo                                                                        | 48 | 13,34**            | 12,98**            | 527,53**             | 542,25**             | 5.921.907**             |  |  |  |
| Híb,Exp                                                                         | 43 | 12,57**            | 13,68**            | 575,85**             | 575,66**             | 4.875.343**             |  |  |  |
| Híb,Test                                                                        | 4  | 10,4 <sup>ns</sup> | 7,6 <sup>ns</sup>  | 133,76 <sup>ns</sup> | 292,42 <sup>ns</sup> | 1.746.207 <sup>ns</sup> |  |  |  |
| Híb, Exp vs Test                                                                | 1  | 58,39**            | 4,72 <sup>ns</sup> | 25,02 <sup>ns</sup>  | $105,23^{ns}$        | 67.626.966**            |  |  |  |
| Resíduo                                                                         | 36 | 1,24               | 1,81               | 96,19                | 54,51                | 1.390.894               |  |  |  |
| CV (%)                                                                          |    | 2,00               | 2,00               | 4,00                 | 6,00                 | 10,0%                   |  |  |  |
| <u>Mínimo</u>                                                                   |    | 63,50              | 64,00              | 205,00               | 98,12                | 7.186                   |  |  |  |
| Máximo                                                                          |    | 75,50              | 74,00              | 275,62               | 176,25               | 15.324                  |  |  |  |
| Média Hibridos Experim.                                                         |    | 69,25              | 69,38              | 245,62               | 132,55               | 11.458                  |  |  |  |
| Média Híbridos Testem.                                                          |    | 71,80              | 70,10              | 243,95               | 129,13               | 14.202                  |  |  |  |
| <b>Méd</b> ia Geral                                                             |    | 69,51              | 69,45              | 245,45               | 132,20               | 11,738                  |  |  |  |

**Tabela 2.** Resumo da média dos 15 melhores genótipos para características agronômicas: dias até florescência masculina (FM, dias), florescência feminina (FF, dias); altura de planta (AP, cm), altura da primeira espiga (AE, cm); produtividade de grão por hectare (PG, kg ha<sup>-1</sup>)

| Híbridos   | FM   | FF   | AP    | AE    | PG     |
|------------|------|------|-------|-------|--------|
| AS1868PRO3 | 69,5 | 67,0 | 236,9 | 116,9 | 15.324 |
| 93V2059    | 71,0 | 70,5 | 245,6 | 133,8 | 14.723 |
| DKB390PRO3 | 75,5 | 71,5 | 250,0 | 147,5 | 14.621 |
| P3898      | 72,0 | 72,0 | 244,4 | 121,9 | 14.578 |
| 91V2007    | 71,5 | 72,0 | 256,9 | 140,6 | 13.871 |
| 93V2122    | 71,5 | 72,0 | 265,0 | 154,1 | 13.500 |
| 93V2107    | 67,5 | 69,0 | 260,6 | 129,4 | 13.449 |
| VA42B      | 70,5 | 70,0 | 253,8 | 134,4 | 13.445 |
| 93V2133    | 73,0 | 72,0 | 273,1 | 176,3 | 13.172 |
| 92V2183    | 70,0 | 72,0 | 251,3 | 134,4 | 13.148 |
| 90V2004    | 72,0 | 72,0 | 253,1 | 146,3 | 13.051 |
| 20A38VIP3  | 71,5 | 70,0 | 234,8 | 125,0 | 13.043 |
| 92V2033    | 71,0 | 70,0 | 261,9 | 133,8 | 12.918 |
| 91V2004    | 68,5 | 69,5 | 245,6 | 128,8 | 12.676 |
| 93V2072    | 70,5 | 70,5 | 250,6 | 128,1 | 12.609 |
| DMS 5%     | 2,2  | 2,7  | 19,7  | 14,8  | 2.371  |
| DMS 10%    | 1,9  | 2,3  | 16,4  | 12,4  | 1.978  |

#### Conclusões

Há variação genotípica entre os híbridos experimentais para todos os caracteres avaliados, e os híbridos 93V2059, 91V2007, 93V2122, 93V2107, 93V2133, 92V2183, 90V2004 são os mais promissores para serem avaliados em mais locais e populações de plantas mais altas.

## Agradecimentos







