

Simpósio de Integração Acadêmica

"Ciências Básicas para o Desenvolvimento Sustentável" **SIA UFV 2023**

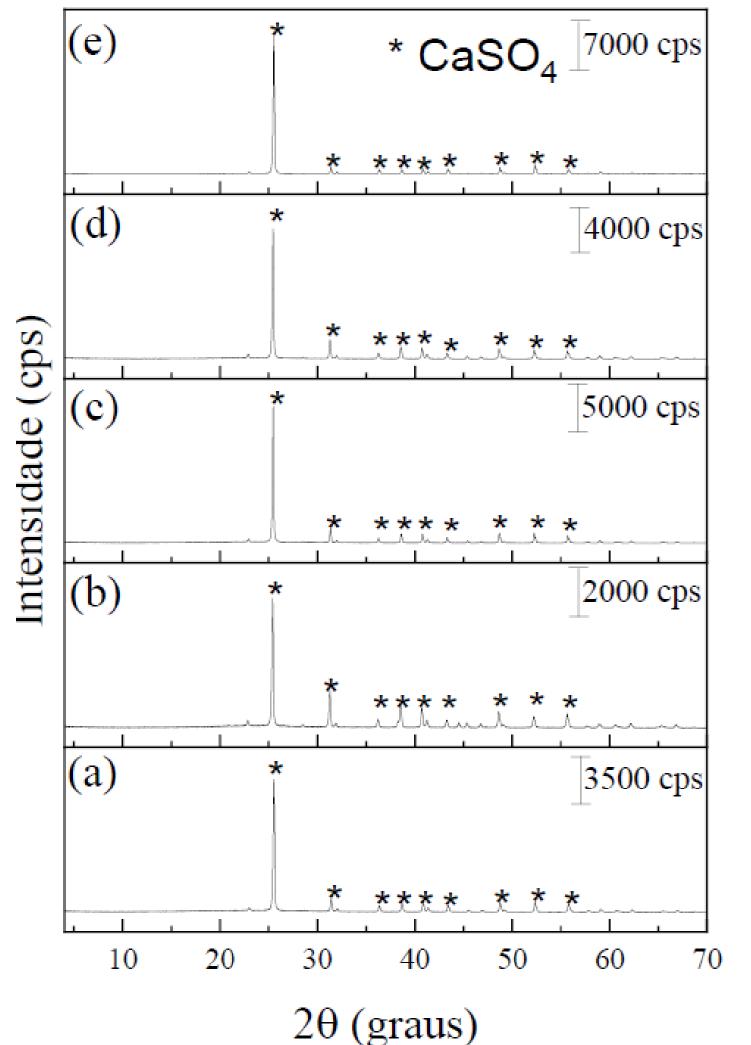
Síntese e caracterização de bone char acidificado com H₂SO₄

(1)Rubens Goncalves Barbosa; (2)Gustavo Franco de Castro; (3)Fabiane Carvalho Ballotin; (4)Isabela Formagio da Silva.

(1) Estudante; Departamento de Agronomia; rubensgbarbosa@ufv.br (2) Docente; Departamento de Agronomia; gustavo.f.castro@ufv.br (3) Técnica; Departamento de Solos; fabiane.ballotin@ufv.br (4)Estudante; Departamento de Agronomia; isabela.silva@ufv.br . Fósforo, solubilidade, fonte alternativa.

Introdução

O reaproveitamento de resíduos ou o uso de fontes alternativas de fósforo (P) são opções para mitigar o abastecimento de fertilizantes fosfatados no Brasil, visto que grande parte destes são importados. A produção de fertilizantes a partir do osso pirolizado e acidificado com H₂SO₄ (bone char-H₂SO₄), tem como perspectiva a formação de produtos com alta solubilidade e concentrações de P similares ao superfosfato simples (SS) [1].


Objetivos

A presente pesquisa tem como objetivo a síntese e caracterização do bone char-H₂SO₄.

Material e Métodos

O bone char foi produzido em um forno tubular sob condições limitadas de O₂ por 2-4 h em diferentes temperaturas (400, 500, 600, 800 e 1000 °C). Os bone chars foram submetidos à acidulação utilizando H₂SO₄ em um reator em sistema fechado. Os materiais sintetizados foram caracterizados por difração de raios-X, espectroscopia infravermelha com transformada de Fourier atenuada com refletância total, extração de Ca e S total, P em água, P em citrato neutro de amônio, P em ácido cítrico 2% e P total.

Resultados e Discussão

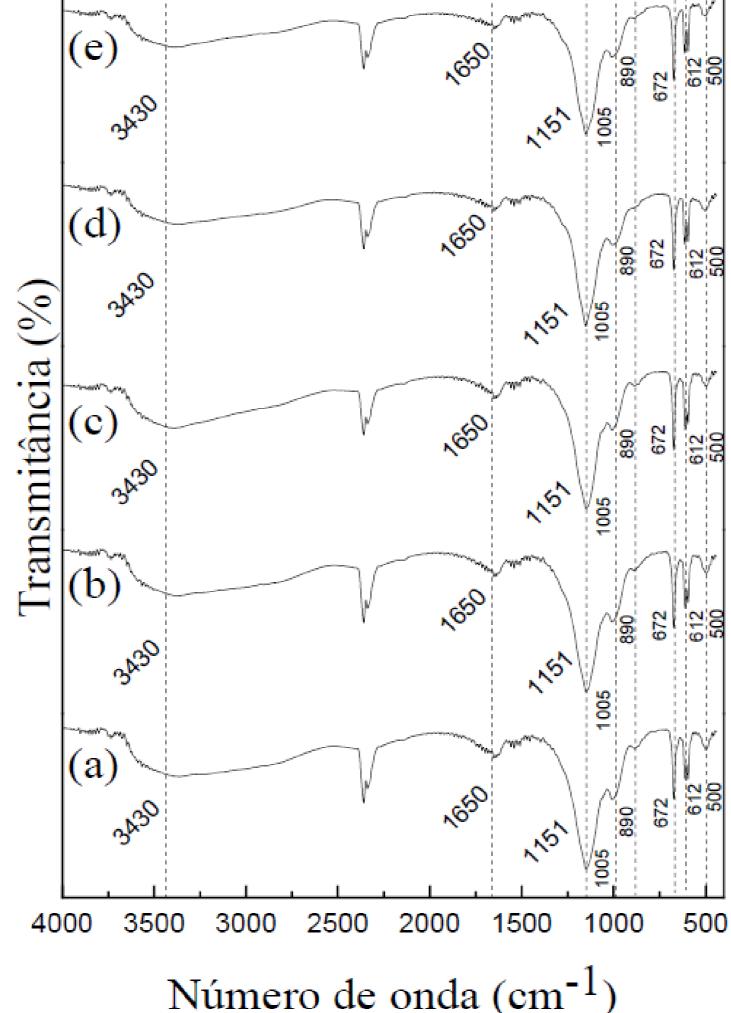


Figura 1: Difratograma de raios X Figura 2: Espectros de FTIR para para os bone char-H₂SO₄: (a)400, os bone char-H₂SO₄: (b)500, (c)600, (d)800 e (e)1000 °C.

(b)500, (c)600, (d)800 e (e)1000 °C.

Tabela 1 - Extração de fósforo na forma de P₂O₅ em água, citrato neutro de amônio (CNA), ácido cítrico 2%, e P₂O₅ total para os bone chars produzidos sem acidificação (BO) e acidificados com ácido sulfúrico (BOAS) nas temperaturas de 400 °C, 500 °C, 600°C, 800 °C e 1000 °C.

MATERIAL	H₂O	CNA	Ácido cítrico	Total
BO 400°C	0,413	20,103	23,668	34,362
BOAS 400°C	16,408	16,674	15,547	16,818
BO 500°C	0,413	19,615	22,709	34,295
BOAS 500°C	16,363	17,045	16,207	18,589
BO 600°C	0,347	19,870	23,428	34,265
BOAS 600°C	16,565	16,866	16,057	18,142
BO 800°C	0,330	5,362	12,150	39,215
BOAS 800°C	18,573	19,278	18,107	20,470
BO 1000°C	0,298	5,233	11,911	40,741
BOAS 1000°C	18,169	19,373	17,625	20,305

chars produzidos bone total para OS acidificados/solubilizados com ácido sulfúrico (BOAS) nas temperaturas de 400 °C, 500 °C, 600 °C, 800 °C e 1000 °C foi de 12,21%, 12,02%, 11,75%, 11,89%, e 10,76%, respectivamente. O fertilizante também apresentou teores de Ca total de 15,02%, 14,29%, 12,20%, 14,28%, e 13,46% para as temperaturas de 400 °C, 500 °C, 600 °C, 800 °C e 1000 °C, respectivamente.

Conclusões

Conclui-se que o bone char-H₂SO₄ tem potencial para ser utilizado como uma fonte alternativa de P com alta solubilidade.

Bibliografia

[1] Leinweber P, Hagemann P, Kebelmann L, et al (2019) Bone Char as a Novel Phosphorus Fertilizer.

Apoio financeiro

Fapemig - Projeto APQ-01452-22

Agradecimentos

