

Simpósio de Integração Acadêmica

"Ciências Básicas para o Desenvolvimento Sustentável"

Efeito do espaçamento de plantio na qualidade do carvão vegetal de clones de Corymbia

Gabrielle Fialho Abranches¹; Angelica de Cassia Oliveira Carneiro¹ ; Marlúcio Mateus Silva ¹; Bruna Duque Guirardi ¹; Letícia Costa Peres¹; Lílian Alves

Carvalho Reis ¹ e Gustavo Mattos Abreu ¹.

1 LAPEM - DEF - UFV

Recursos flo

Recursos florestais e engenharia florestal. Categoria: Pesquisa Palavras chave: Tratos silviculturais; densidade aparente; poder calorifico.

Introdução

Mormente, o carvão vegetal é uma matéria-prima importante para indústria siderúrgica, pois é utilizado como agente redutor do minério de ferro na produção de ferro-gusa. A qualidade do carvão vegetal está diretamente relacionado à qualidade da madeira, sendo essencial estabelecer parâmetros práticos para classificar as espécies. Outrossim, as práticas silviculturais empregadas no povoamento florestal têm um impacto na qualidade da madeira. Nesse sentido, determinar o espaçamento ideal de plantio é uma das estratégias para obter madeira e,consequentemente, o carvão vegetal com índices de qualidade adequados.

Objetivo

Avaliar dois clones híbridos de *C. citriodora* x *C. torelliana* para a produção de carvão vegetal plantados em diferentes espaçamentos.

Material e Métodos

Dois clones híbridos de *citriodora* x C. *torelliana* (C1 e C2), aos 7 anos de idade. Plantados nos espaçamentos 3 m x 2 m, 3 m x 3 m, 6 m x 1,5 m e 6 m x 1,25 m. A madeira foi carbonizada, em forno mufla elétrico, com temperatura final de 450 °C (Figura 1).

Foram realizadas análises da densidade aparente do carvão, poder calorífico superior e rendimento gravimétrico em carvão vegetal. A massa de carvão vegetal (MCV em t/ha) foi obtida multiplicando-se a massa seca de madeira pelo rendimento gravimétrico em carvão vegetal. O experimento foi conduzido utilizando delineamento inteiramente casualizado em esquema fatorial (2x4). Os dados foram submetidos à Análise de Variância a 5% de significância, e caso verificada diferença significativa entre as médias, aplicou-se o teste Tukey a 5% de significância.

Figura 1. Esquema de amostragem e carbonização do material

A1. Cunhas opostas destinadas a carbonização

A2. Cunhas opostas destinadas as demais analises

Apoio financeiro

Resultados e Discussão

A interação dos fatores não foi significativa para as propriedades analisadas (Tabelas 1 a 4).

Tabela 1. PCS da madeira.

Tabela 2. Densidade aparente do carvão vegetal.

PODER CALORÍFICO SUPERIOR (PCS)				DENSIDADE APARENTE DO CARVÃO (kg/m³)				
ESPAÇAME NTO	CLONE			ESPAÇAME	CLONE			
	C1	C2	MÉDIA	NTO	C1	C2	MÉDIA	
3x2	7203,97	6805,77	7004,87	3x2	419,73	318,46	369,10	
3x3	7098,08	6889,60	6993,84	3x3	446,20	339,94	393,07	
6x1,25	6991,96	6619,89	6805,93	6x1,25	412,60	335,23	373,92	
6x1,5	6838,17	6790,18	6814,18	6x1,5	395,31	332,22	363,77	
MÉDIA	7033,05 A	6776,33 B		MÉDIA	418,46 A	331,46 B		

Tabela 3. Energia do carvão.

Tabela 3. Massa de carvão vegetal.

ENERGIA DO CARVÃO (mcal/ha)				MASSA DE CARVÃO VEGETAL (t/ha)			
ESPAÇA MENTO	CLONE			ESPAÇAME	CLONE		
	C1	C2	MÉDIA	NTO	C1	C2	MÉDIA
3x2	301357,2	155628,9	228493,1	3x2	41,76	22,89	32,33 b
3x3	305141,9	198310,9	251726,4	3x3	42,95	2]8,72	35,84 ab
6x1,25	381022,8	198608,7	289815,7	6x1,25	54,43	29,97	42,20 a
6x1,5	328207,7	219128,9	273668,3	6x1,5	47,83	32,44	40,14 ab
MÉDIA	328932,4 A	192919,4 B		MÉDIA	46,74 A	28,51 B	

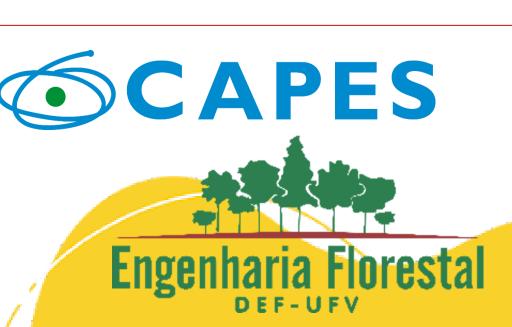
No geral, considerando as variáveis analisadas, o C1 demonstra ser um material genético mais adequado para a produção de carvão vegetal, devido ao maior PCS, densidade e massa de carvão vegetal produzido por hectare. Das variáveis analisadas, não houve diferença entre os espaçamentos. No entanto, destaca-se o espaçamento 6 m x 1,25 m na produção por área.

É de extrema importância compreender a interação entre as práticas silviculturais e os materiais genéticos que podem afetar a qualidade e quantidade da madeira e do carvão vegetal produzidos.

Conclusões

O clone C1 se destacou para a produção de carvão vegetal. Quanto aos espaçamentos, o plantio de $6 \times 1,5 \text{ m}$ obteve a maior massa de carvão vegetal por hectare.

Bibliografia


ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 8633: Carvão vegetal: determinação do poder calorífico, Rio de Janeiro, 1984.

VITAL, R. B. Métodos de determinação da densidade da madeira. Boletim Técnico, Viçosa, MG, n. 1, p. 21, 1984

Agradecimentos

