
Simpósio de Integração Acadêmica

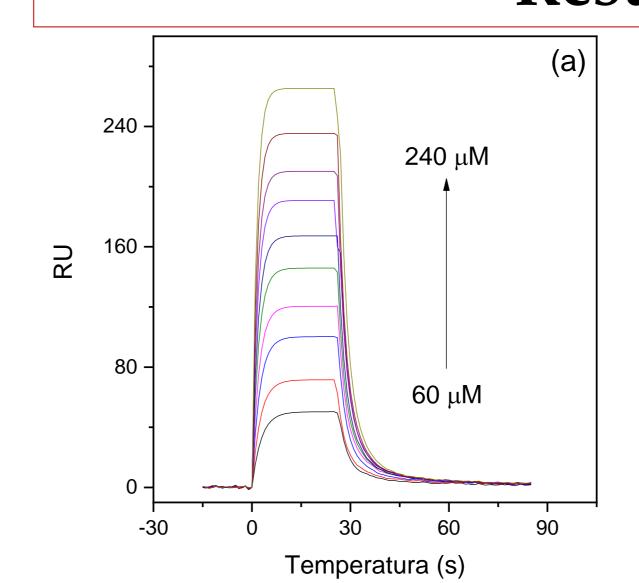
"Ciências Básicas para o Desenvolvimento Sustentável"

COMPLEXOS SUPRAMOLECULARES LACTOFERRINA-GLICOMACROPEPTÍDEO COMO NANOCARREADORES DE RESVERATROL: ABORDAGEM TERMODINÂMICA E CINÉTICA

Leonardo Saulo Pereira Alves (leonardo.saulo@ufv.br), Luis Henrique Mendes da Silva (luhen@ufv.br), Isabela Araujo Marques (isabela.araujo@ufv.br), Hauster Maximiler Campos de Paula (hauster.campos@gmail.com), Mariana Souza Albuine (mariana.albuine@ufv.br) Cinética; Termodinâmica; Complexo Proteico

Objetivos

Caracterizar cinética e termodinamicamente a formação de agregados supramoleculares entre o complexo proteico LF@GMP e o composto bioativo Resveratrol utilizando a técnica de RPS.


Material e Método

$$ln\left(\frac{K_b(T_2)}{K_b(T_1)}\right) = -\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$T\Delta S^{\circ} = \Delta H^{\circ} - \Delta G^{\circ}$$

Resultados e Discussão

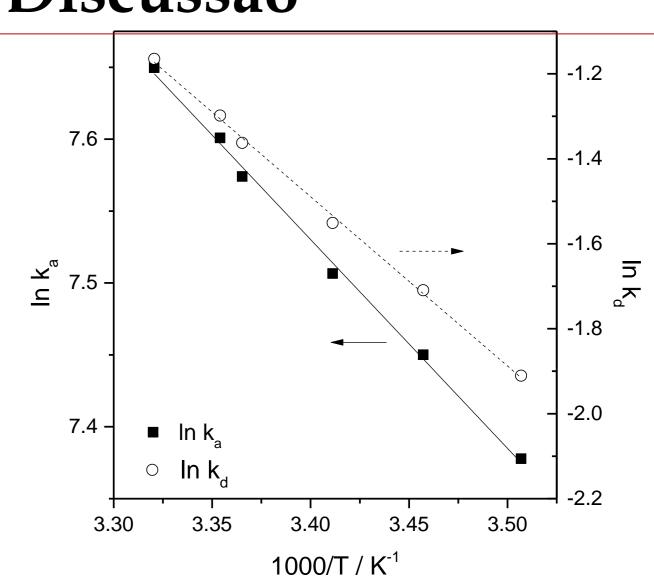


Fig. 1 - Sensorgrama para a interação CP-RES.

Fig. 2 – Gráfico de Arrhenius para as fases envolvidas nas interações CP-RES

TABELA 1 – Parâmetros energéticos do $[LF@GMP - RES]^{\dagger}$ a partir da: (a) associação de moléculas livres de RES e LF@GMP; e (d) dissociação do $[LF@GMP-RES]^{\circ}$

	Fase de associação (a)				Fase de dissociação (d)				
T	$E_{\mathrm{a}}^{\ddagger}$	$\Delta H_{\rm a}^{\ddagger}$	$\Delta G_{ m a}^{\ddagger}$	$T\Delta S_{\mathrm{a}}^{\ddagger}$	$E_{\mathbf{d}}^{\ddagger}$	$\Delta H_{ m d}^{\ddagger}$	$\Delta G_{\mathbf{d}}^{\ddagger}$	$T\Delta S_{ m d}^{\ddagger}$	
(K)	(kJ mol-1)								
285,15	12,04	9,67	52,24	-42,57	33,07	30,70	74,26	-43,55	
289,15		9,63	52,83	-43,19		30,67	74,85	-44,18	
293,15		9,60	53,46	-43,85		30,64	75,53	-44,90	
297,15		9,57	54,05	-44,48		30,60	76,13	-45,53	
298,15		9,56	54,18	-44,62		30,59	76,24	-45,64	
301,15		9,53	54,62	-45,09		30,57	76,69	-46,12	

TABELA 2 – Parâmetros termodinâmicos para a formação do complexo [LF@GMP-RES]°

Temperatura	K_b	ΔH^{o}	ΔG^{o}	$T\Delta S^{\mathrm{o}}$
(K)	$(10^3 L mol^{-1})$		(kJmol ⁻¹)	
285,15	10,81		-22,02	0,99
289,15	9,50		-22,02	0,98
293,15	8,58	21 02	-22,08	1,04
297,15	7,61	-21,03	-22,08	1,04
298,15	7,33		-22,06	1,03
301,15	6,73		-22,07	1,03

Conclusões

Os parâmetros energéticos revelaram que, para a formação do complexo ativado, a partir da associação entre as moléculas livres, a barreira energética tem origem tanto entalpica quanto entrópica. No entanto, quando o complexo termodinamicamente estável é formado, há uma reorganização do RES no sítio de ligação do CP. Como resultado, os parâmetros termodinâmicos de formação do complexo revelaram que o processo é, principalmente, entalpicamente dirigido uma vez que as contribuições entrópicas apresentaram magnitudes aproximadas. A partir das interpretações dos parâmetros termodinâmicos e cinéticos determinados neste trabalho será possível o desenvolvimento de novas formulações envolvendo proteínas lácteas, com potencial aplicação nas indústrias de alimentos, farmacêuticas, entre outras.

Apoio financeiro/ Agradecimentos

