

Simpósio de Integração Acadêmica

O POTENCIAL DAS NANOCÁPSULAS DE EXTRATOS DE CAFÉ RESISTENTE E DE BAIXA QUALIDADE NO CONTROLE DA BROCA DO CAFEEIRO.

João Victor Araújo Freitas^{1*}, Daiane Einhardt Blank¹, Antônio Jacinto Demuner¹, Marcelo Coutinho Picanço², Pedro Henrique Queiroz Lopes², Maria José Magalhães Firmino¹

¹Departamento de Química, ²Departamento de Entomologia joao.freitas80@ufv.br

Coffea arabica, inseticida, nanocelulose

Ciências exatas e tecnológicas - Modalidade pesquisa

Introdução

Hypothenemus hampei, inseto que ataca os frutos do cafeeiro que é conhecido popularmente como broca do café. Essa praga é considerada importante porque ataca os frutos em qualquer estágio de maturação, inclusive o grão já seco. O controle químico desta praga, apesar de ser o mais utilizado, não tem apresentado boa eficiência e causa problemas de resistência e desequilíbrio do meio ambiente. Por isso, o desenvolvimento de nanocápsulas poliméricas para controle biológico desta praga é uma alternativa sustentável para a cultura do café que possui um grande mercado consumidor mundial.

Figura 1. Fruto enfestado pela broca do cafeeiro.

Figura 2. Fruto do cafeeiro saudável.

Objetivos

Este estudo teve como objetivo preparar nanocápsulas com extratos de café resistente e de baixa qualidade e verificar o efeito no controle da broca do cafeeiro.

Material e Métodos

No ensaio inseticida foi avaliado o efeito das formulações sobre a broca do café, em aplicação tópica sobre o inseto. Para estes ensaios foram utilizadas fêmeas adultas de *Hypothenemus hampei* e para avaliar a mortalidade pelo efeito da aplicação tópica dos extratos foram transferidas 10 fêmeas ativas e adultas da broca da criação para placas de Petri. Logo após a transferência das fêmeas, foi realizada a aplicação. Após a pulverização e secagem da calda, foram adicionados 10 frutos por placa de Petri.

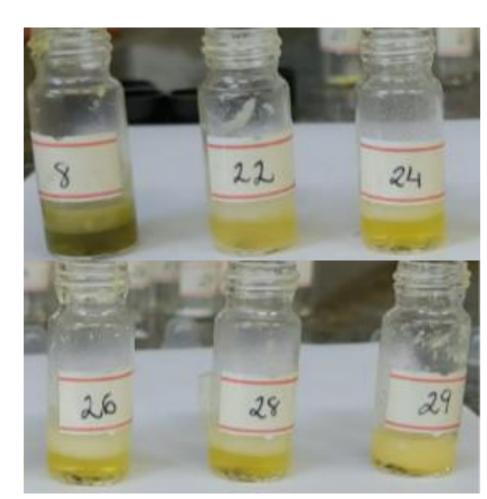


Figura 3. Extratos nanoencapsulados preparados para realização dos testes.

As avaliações foram realizadas 4, 12, 24 e 48 horas e 3, 5 e 7 dias após a aplicação dos extratos. Aos 15 dias, após a aplicação, os frutos atacados foram dissecados para contagem do número de ovos e larvas vivas da broca do cafeeiro.

Resultados e Discussão

Todos os extratos encapsulados apresentaram efeito inseticida em 4 horas após a exposição. Em 48 horas a mortalidade foi de 100%.

Conclusões

Os resultados obtidos no presente estudo sugerem que a pulverização dos extratos nanoencapsulados pode levar os insetos à morte por contato e também pela ingestão da parte externa dos frutos contaminados, bem como pode causar repelência. Esses resultados indicam que extrato encapsulado prolongou o efeito, sendo uma alternativa para o controle da broca do café.

Bibliografia

SANTOS, A. A.; FARDER-GOMES, C. F.; RIBEIRO, A. V.; COSTA, T. C.; FRANÇA, J.C.O.; BACCI, L.; DEMUNER, A. J.; SERRÃO, J.E.; PICANÇO, M.C. Lethal and sublethal effects of an emulsion based on *Pogostemon cablin* (Lamiaceae) essential oil on the coffee berry borer, *Hypothenemus hampei*. **Environmental Science and Pollution Research, 2023.** https://doi.org/10.1007/s11356-022-19183-1

CALLISTER, W. D. J.; RETHWISCH, D. G. Materials science and engineering: an introduction. 10. ed. Hoboken, Nj: Wiley, 2018.

REYES, E. I. M.; FARIAS, E. S.; SILVA, E. M. P.; FILOMENO, C. A.; PLATA, M. A. B.; PICANÇO, M. C.; BARBOSA, L. C. A. **Crop Protection**, v. 116, p. 49-55, 2019. doi:10.1016/j.cropro.2018.09.018.

Apoio financeiro

Agradecimentos

