

Simpósio de Integração Acadêmica

Universidade Federal de Viçosa

"Bicentenário da Independência: 200 anos de ciência, tecnologia e inovação no Brasil e 96 anos de contribuição da UFV"

SIA UFV 2022

DESEMPENHO AGRONÔMICO DE HÍBRIDOS ELITES DE MILHO DA UFV EM CONDIÇÕES CONTRASTANTES DE NITROGÊNIO

João Artur Zelenski¹; Rodrigo Oliveira De Lima¹; Victória Manhago Salvador¹; Davi Nunes Leandro Silva¹; Vidomar Destro de Souza Filho¹; Gabriela dos Santos Pereira¹; ¹Universidade Federal de Viçosa, Centro de Ciências Agrárias, Departamento de Agronomia, Viçosa, Minas Gerais, Brasil. *Autor para correspondência: rodrigoodelima@ufv.br Palavras-chave: *Zea mays* L.; adubação nitrogenada; estresse abiótico.

Introdução

O milho (*Zea mays* L.) é o cereal mais produzido no mundo e o nitrogênio (N) é um dos principais nutrientes requeridos pela cultura. A sua limitação impacta negativamente a produtividade e o desenvolvimento fisiológico da planta. Logo, há uma demanda em se desenvolver híbridos com maior eficiência no uso de N, para reduzir a utilização, impactos ambientais e custos com fertilizantes agrícolas nitrogenados na cultura do milho.

Objetivos

Avaliar o desempenho agronômico e selecionar híbridos simples de milho com alto potencial produtivo em ambientes contrastantes de N.

Material e Métodos

Foram avaliados 44 híbridos elites de milho desenvolvidos pelo Programa Milho® UFV e cinco testemunhas (híbridos comerciais) na UEPE-Coimbra (Unidade de Ensino, Pesquisa e Extensão de Coimbra), pertencente à UFV, na safra 2021/2022. Foram conduzidos dois experimentos: um em condições normais de adubação de N (alto N) e outro em condições de estresse por baixo N (baixo N). Para ambos os experimentos, foi utilizado o delineamento de blocos incompletos (látice 7x7), com duas repetições. Cada parcela foi constituída por duas linhas de quatro metros, espaçadas em 0,8 m. Os caracteres avaliados foram: dias até o florescimento masculino (FM, dias) e feminino (FF, dias), altura de planta (AP, cm), altura de espiga (AE, cm) e produtividade de grãos (PG, kg ha⁻¹).

Resultados e Discussão

Tabela 1. Resumo da análise de variância individual para os caracteres avaliados na UEPE-Coimbra em condições normais de N

alto nitrogênio									
Fonte de variação GI		FM	FF	AP	AE	PG			
$Rep^{/1}$ 1		2,61ns	9,18**	209,39ns	92,09 ^{ns}	1.575.416 ^{ns}			
Bloco/Rep/1 12		$1,12^{ns}$	$1,47^{ns}$	192,07**	114,45*	$2.102.706^{\mathrm{ns}}$			
Genótipo ^{/1} 4		8,56**	9,91**	654,80**	646,52**	5.115.174**			
Híb.Exp ^{/1}	43	9,03**	9,96**	721,14**	684,26**	4.727.026**			
Híb.Test ^{/1}	4	3,60*	10,85*	67,81ns	379,92*	$3.518.884^{\mathrm{ns}}$			
Híb.Exp_vs_Test/1	1	$8,54^{\mathrm{ns}}$	$3,93^{\mathrm{ns}}$	150,28 ^{ns}	$89,78^{\text{ns}}$	28.190.716**			
Resíduo/1	36	0,89	0,95	58,13	47,10	1.623.945			
CV %		1,36	1,42	3,10	5,10	12			
Mínimo		64,50	65,00	186,00	94,00	5.504			
Máximo		74,00	73,00	280,00	186,00	13.718			
Média_H.EXP	69,13	68,76	246,22	134,79	10.713				
Média_H.test	70,10	68,10	242,13	131,63	12.485				
Média_Geral	69,22	68,69	245,80	134,46	10.894				

** e * significativo a 1% e 5% de significância, respectivamente. ns não significativo. /1 valores de Quadrado Médio.

Tabela 2. Resumo da análise de variância individual para os caracteres avaliados na UEPE-Coimbra em condições de baixo N

baixo nitrogênio								
Fonte de variação	GL	FM	FF	AP	AE	PG		
$ m Rep^{/1}$	1	$3,68^{ns}$	2,61ns	15,52 ^{ns}	46,84 ^{ns}	10.572.024**		
Bloco/Rep/1	12	$1,42^{ns}$	1,67 ^{ns} 11,13** 12,19** 0,75 ^{ns}	368,05**	383,57**	1.069.292*		
Genótipo/1	48	8,78**		411,03**	325,02**	1.443.355**		
Híb.Exp ^{/1}	43	9,29** 3,10 ^{ns}		422,06**	273,22**	1.367.212**		
Híb.Test ^{/1}	4			361,92 ^{ns}	908,09**	653.887^{ns}		
Híb.Exp_vs_Test/1	1	$9,56^{\mathrm{ns}}$	$6,70^{\rm ns}$	133,14 ^{ns}	$220,53^{ns}$	7.875.381**		
Resíduo/1	36	1,10	1,40	50,79	83,65	452.852		
CV %		1,50	1,67	3,32	8,10	11		
Mínimo		64,00	67,00	171,25	63,75	3.740		
Máximo		75,00	78,00	257,50	145,00	9.209		
Média_H.EXP		70,07	70,86	215,28	113,38	5.844		
Média_H.test		71,10	70,00	211,43	108,43	6.781		
Média_Geral		70,17	70,78	214,88	112,88	5.940		

** e * significativo a 1% e 5% de significância, respectivamente. ns não significativo. /1 valores de Quadrado Médio.

Tabela 3. Resumo teste de médias (Scott-Knott), para os caracteres avaliados na UEPE-Coimbra em condições normais e de baixo N, (dez mais produtivos em cada ambiente)

alto nitrogênio						baixo nitrogênio						
	Híbridos	FM	FF	AP	ΑE	PG	Híbridos	FM	FF	AP	ΑE	PG
	AS1868PRO3	69,5c	66,5d	235,0c	116,9d	13.718a	92V2144	72,5a	71,0b	213,4b	114,4a	8.203a
	92V2183	69,0c	68,5c	252,5b	134,4c	13.621a	92V2183	69,5b	69,5c	225,0a	110,6a	7.639a
	93V2072	69,0c	70,0b	255,6b	136,9c	13.387a	P3898	71,0a	71,0b	207,5b	103,9a	7.490a
	DKB390PRO3	72,0a	70,0b	245,0c	148,7b	13.351a	93V2030	67,0c	68,0c	228,2a	109,7a	7.467a
	93V2107	69,0c	70,0b	243,1c	122,5d	13.203a	93V2107	72,0a	72,5b	233,5a	111,9a	7.203a
	P3898	71,0b	71,0b	237,5c	118,7d	12.689a	91V2008	69,5b	70,0c	207,6b	113,7a	7.009a
	91V2007	70,5b	72,5a	246,9b	141,2c	12.568a	DKB390PRO3	73,0a	69,5c	213,6b	132,5a	7.000a
	93V2131	73,0a	73,0a	279,4a	186,2a	12.451a	91V2001	69,0b	69,0c	218,1a	124,5a	6.965a
	20A38VIP3	69,0c	65,5d	249,4b	140,6c	12.354a	VA42B	71,0a	69,5c	219,7a	108,5a	6.898a
	93V2122	70,0b	69,0b	258,1b	141,2c	12.259a	92V2137	66,0c	67,0c	209,7b	119,4a	6.832a
					41.0							

Médias seguidas de mesma letra, na coluna, não diferem estatisticamente entre si pelo teste de Scott-Knott a 5% de probabilidade.

Conclusões

Há variabilidade genotípica entre os híbridos avaliados. Em baixo N, foram identificados os híbridos experimentais 92V2144, 92V2183, 93V2030 e 93V2107, com produtividades superiores a 7.200 kg ha⁻¹ (120 sacas ha⁻¹). Em alto N, foram identificados os híbridos experimentais 92V2183, 93V2072, 93V2107 e 91V2007, com produtividades superiores a 12.000 kg ha⁻¹ (200 sacas há⁻¹).

