

Simpósio de Integração Acadêmica

"Bicentenário da Independência: 200 anos de ciência, tecnologia e inovação no Brasil e 96 anos de contribuição da UFV"

SIA UFV 2022

Desenvolvimento de sensores eletroquímicos baseados em solventes eutéticos profundos para determinação de metais pesados em águas

Caio Antonio Dias Schneider (Bolsista de IC/CNPq), Tiago Almeida Silva (Professor/Orientador – DEQ) e Leonardo Luis Okumura (Professor/Colaborador – DEQ)

Sensores eletroquímicos, Solventes eutéticos profundos, Redissolução anódica

20

10

-20

-30

Introdução

A busca por métodos para a quantificação de metais pesados se dá em razão do seu fator de bioacumulação na natureza, o que pode gerar graves problemas ao meio ambiente e também para a saúde humana¹. Portanto, neste trabalho foram preparados eletrodos de pasta de carbono (CPE, do inglês "Carbon Paste Electrode") modificados com solventes eutéticos profundos (DES, do inglês "Deep Eutectic Solvents") para realizar a determinação por voltametria de redissolução anódica de Pb²⁺ em águas.

Objetivos

Este projeto teve como objetivo geral a preparação de novos sensores voltamétricos baseados em eletrodos de pasta de carbono modificados com solventes eutéticos profundos (hidrofóbico ou hidrofílico) para determinação do cátion metálico Pb²⁺ em águas residuárias.

	Material e Métodos	
Síntese dos DES		
<u> </u>		Polina

Resultados e Discussão

Universidade Federa

40 (a) 300 mV s 40 (e) 300 mV s 300 mV s⁻ 40 (C) 20 20 20 (Y¹⁾-10-(Yri) | -20 (Find 1) - -20 (⁰ <u>-20</u> CPF TBABr-CPE **Relina-CPE** CPE **TBABr-CPE** -0,6-0,30,00,30,60,9 -0,6 -0,3 0,0 0,3 0,6 0,9 -0,6 -0,3 0,0 0,3 0,6 0,9 0.0 0,4 0,8 E (V) vs. Ag/AgCl E (V) vs. Ag/AgCl E (V) vs. Ag/AgCl E (V) vs. Ag/AgCl 30 $20 \int (d^{1})$ 20∤(b) Figura 5. Voltamogramas cíclicos obtidos para uma solução de K₃Fe(CN)₆ 1,0 \times 10⁻³ mol L⁻¹ em KCl 0,1 mol L^{-1} usando-se CPE, TBABr-CPE e Relina-CPE. v = 50 mV s. (Au) -1 Parâmetros Eletroquímicos $\Delta E_{\rm p} = E_{\rm pa} - E_{\rm pc}$ Área Eletroativa 0,2 0,3 0,4 0,5 0,3 0,4 0,5 0,2 0,1 0,2 0,3 0,4 0,5 0,1 0.1 $v^{1/2} (V^{1/2} s^{-1/2})$ $v^{1/2} (V^{1/2} s^{-1/2})$ CPE: 533,5 mV CPE: 0,05 cm² $v^{1/2} (V^{1/2} s^{-1/2})$ **Figura 6.** Voltamogramas cíclicos obtidos em KCl 0,1 mol L⁻¹ contendo K₃Fe(CN)₆ 1,0 × 10⁻³ mol L⁻¹ usando-se (a) CPE, **TBABr-CPE:** 465,5 mV TBABr-CPE: 0,05 cm² (c) TBABr-CPE e (e) Relina-CPE. Curvas de I_{pa} vs. $v^{1/2}$ e I_{pc} vs. $v^{1/2}$ obtidas para (b) CPE, (d) TBABr-CPE e (f) Relina-CPE. Relina-CPE: 0,063 cm² Relina-CPE: 280,2 mV Determinação de Pb²⁺ **ESTUDO COMPARATIVO OTIMIZAÇÕES 1600**_T (a (b) Tabela 1. Parâmetros otimizados com suas respectivas 1200 - CPE faixas e valores ótimos. 1200-— TBABr-CPE (Y¹) 400 Faixas Valor (M) Parâmetros Otimizados 800 Ótimo Estudadas Potencial de pré-concentração (V) -0,5 a -1,2 -1,0

□ Caracterização eletroquímica dos eletrodos

Apoio Financeiro

CNPq, FAPEMIG (Proc. Nº: APQ-00083-21).

Agradecimentos

- Incremento de 65% na corrente de redissolução anódica do Pb com o uso do CPE modificado com DES relina;
- Faixa linear de 0,15 a 1,45 μ mol L⁻¹;
- Novos ensaios de caracterização e aplicação em amostras precisam ser realizados.

