

Simpósio de Integração Acadêmica

"A Transversalidade da Ciência, Tecnologia e Inovações para o Planeta" SIA UFV Virtual 2021

Caracterização de Simetrias em Misturas Binárias de Discos Duros via Fatores de Estrutura

Y. M. Oliveira ^{1†}, L. G. Rizzi ^{1‡}

¹ Departamento de Física - Universidade Federal de Viçosa

†ygor.macedo@ufv.br, ‡lerizzi@ufv.br

Palavras-chave: simetrias, misturas binárias de discos duros, fator de estrutura.

Área Temática: Física da Matéria Condensada; Grande Área: Física; Categoria: Trabalho de Pesquisa

Introdução

Na década de 1980 o físico-químico Dan Shechtman descobriu uma liga metálica de alumínio e manganês que apresentava um padrão de difração não usual para materiais cristalinos. Sua descoberta redefiniu as convenções cristalográficas e lhe rendeu o Nobel de Química de 2011. Os quasicristais possuem padrões de difração que correspondem à simetrias discretas rotacionais que essencialmente proibidas aos cristais, i.e., que não são de ordem 2, 3, 4 ou 6.

Partindo de evidências experimentais [1], consideramos sistemas de binárias de discos duros com potencial de apresentar simetrias "proibidas", testando a ideia de que a formação de coloides quasicristalinos tem origem puramente entrópica [1].

estudar Para misturas essas implementamos o algoritmo de eventchain Monte Carlo (ECMC), que se destaca em simulações de sistemas grandes e densos [2].

Objetivos

Utilizar métodos computacionais para construir sistemas bidimensionais de misturas binárias de discos duros de diferentes raios. Caracterizar estes sistemas através da quantidade física chamada de fator de estrutura, que é o equivalente teórico do resultado de um experimento de difração. Investigar a presença de simetrias rotacionais "proibidas" nestes sistemas, o que indicaria a existência de uma estrutura quasicristalina.

Metodologia

Vários sistemas bidispersos de diferentes O fator de estrutura é dado por: frações de área $\phi_i = N_i A_{d_i}/A_s$ foram construídos com o ECMC, onde, i é a espécie do disco, N_i é o número de discos, A_{d_i} é a área do disco e A_s é a área do sistema.

O ECMC é um método simulacional de Monte Carlo para sistemas de discos duros e afins. Ele permite deslocar uma longa cadeia de elementos numa dada direção, em um único movimento, como mostra a Fig.1.

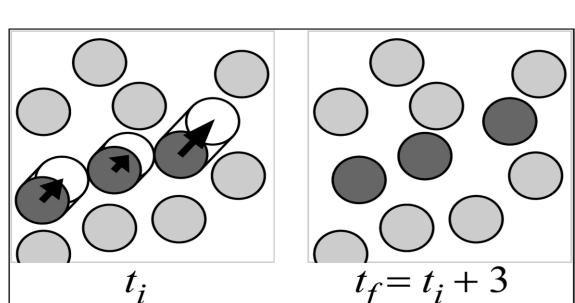


Fig.1: Dois instantes de tempo num deslocamento no ECMC. Adaptado de [3].

$$S(\vec{q}) = \frac{1}{N} \sum_{\nu} \sum_{\mu} e^{i\vec{q} \cdot (\vec{r_{\nu}} - \vec{r_{\mu}})} . \tag{1}$$

E o fator de estrutura parcial, por:

$$S_{ij}(|\vec{q}|) = \frac{1}{N} \left\langle \sum_{\nu}^{N_i} \sum_{\mu}^{N_j} e^{i\vec{q} \cdot (\vec{r_{\nu}} - \vec{r_{\mu}})} \right\rangle , \quad (2)$$

onde $\overrightarrow{r_{v,u}}$ é a posição do disco v da espécie i, ou μ da espécie j ($N = N_i + N_i$), e \vec{q} é o vetor 2D do espaço de momentos, em que $|\vec{q}| = 2\pi/L$, onde L é o tamanho do sistema.

Além da fração de área total, $\phi_t = \phi_l +$ ϕ_s , atuam como parâmetros as razões $\tau = \phi_l/\phi_t$ e $\gamma = \sigma_l/\sigma_s$, onde $\sigma_{l,s}$ é o diâmetro do disco maior *l*, ou menor *s*. Um termo de não-aditividade $\Delta < 0$ entre discos de raios diferentes também foi considerado, tal que:

$$d_{ls} = \frac{1}{2}(\sigma_l + \sigma_s)(1 + \Delta)$$
, (3)

onde d_{ls} é a distância entre o centro de discos de espécies distintas.

Resultados e Discussão

Da combinação linear de fatores parciais se escreve o fator de estrutura de Bhatia-Thornton: $S_{nn} = S_{ll} + S_{ss} + 2S_{ls}$. Com ele é possível avaliar a relação número-número entre os $N = N_l + N_s$ discos de espécies distintas que compõem os sistemas [4]. A Fig.2 apresenta alguns resultados obtidos:

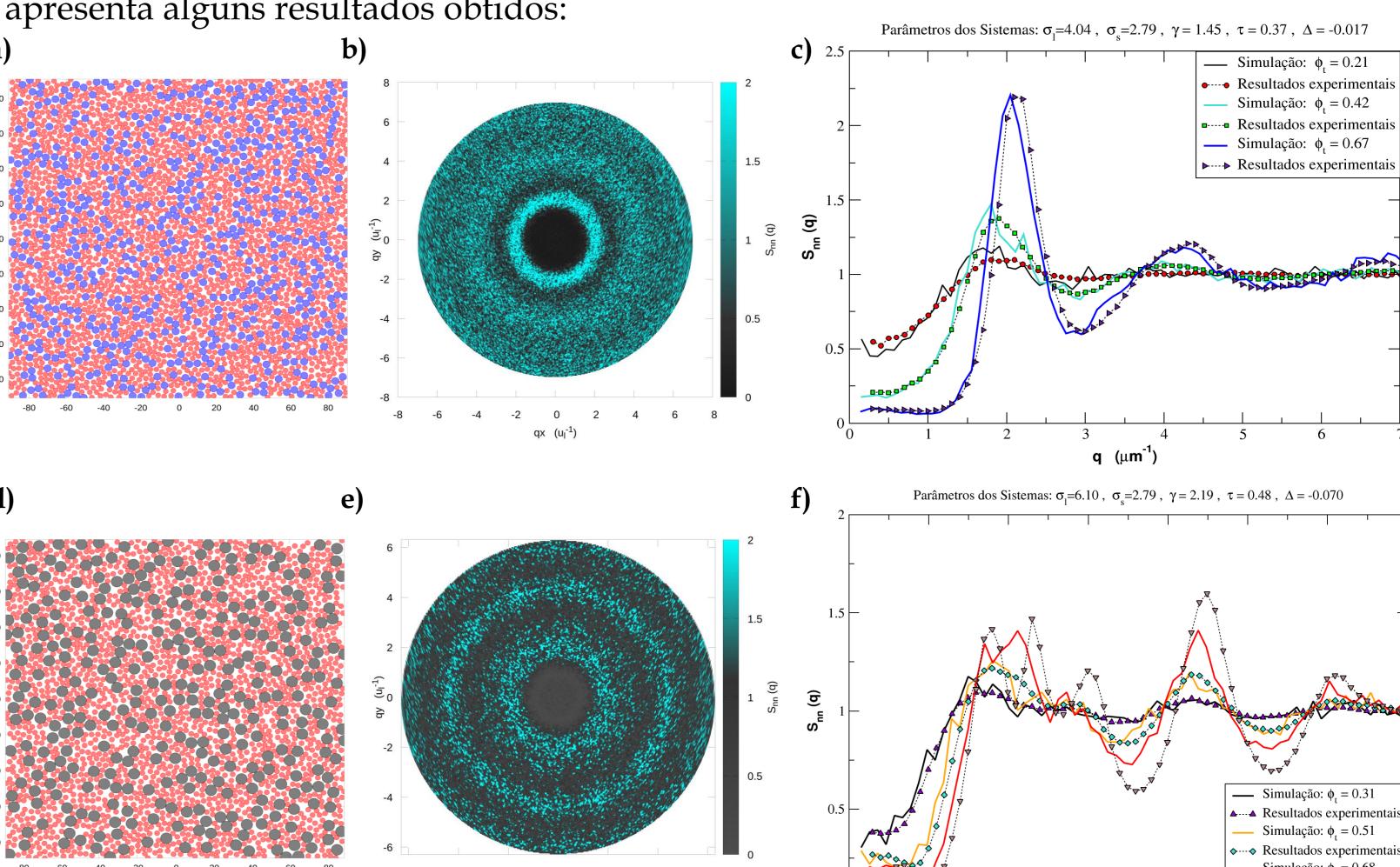


Fig.2: a) Sistema, após aplicação do ECMC, com parâmetros: $L=181.9~\mu m$, $\varphi_t=0.67$, $\tau=0.37$, $\gamma=1.45$, $\sigma_l=0.00$ 4.04 μm, $\sigma_s = 2.79$ μm e $\Delta = -0.017$. b) Mapa 2D do fator S_{nn} representado no espaço-q. c) Gráfico da parte real de S_{nn} por $|\vec{q}|$ para três valores diferentes de ϕ_t comparados a resultados experimentais [4]. d) Sistema, após ECMC, com parâmetros: $L=177.8~\mu m$, $\phi_t=0.68$, $\tau=0.48$, $\gamma=2.19$, $\sigma_l=6.10~\mu m$, $\sigma_s=2.79~\mu m$ e $\Delta = -0.070$. e) Mapa 2D do fator S_{nn} representado no espaço-q. f) Gráfico da parte real de S_{nn} por $|\vec{q}|$ para três

Conclusões

Os resultados encontrados apontam a formação de estruturas amorfas (e.g. vidros), que não possuem simetrias rotacionais discretas, caracterizadas por fatores de estrutura contendo anéis concêntricos ao ponto central (Fig.2 b) e e)). O raio médio dos anéis são inversamente proporcionais as distâncias características entre discos num sistema. A influência do termo de não-aditividade é maior para valores de γ maiores, e a sua inclusão afetou os resultados para os sistemas com $\gamma = 2.19$, tal que, no geral, os gráficos de S_{nn} obtidos estão em razoável concordância com resultados experimentais para sistemas quase-bidimensionais de misturas de esferas rígidas [4].

Bibliografia

- [1] D.V. Talapin, E.V. Shevchenko et al., Nature 461, 964–967, (2009).
- [2] E.P. Bernard e W. Krauth, *Phys. Rev. Lett.* **107** (15), 155704 (2011).

valores diferentes de ϕ_t comparados a resultados experimentais [4].

- [3] E.P. Bernard, W. Krauth e D.B. Wilson, *Phys. Rev. E* **80** (5), 056704 (2009).
- [4] A.L. Thorneywork et al., Molecular Physics 116, 3245 (2018).

Apoio Financeiro

Este trabalho foi parcialmente financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) através do programa PIBIC-UFV.

Agradecimentos

Grupo de Investigação de Sistemas Complexos - GISC/DPF. Instituições de fomento à pesquisa: CNPq, FAPEMIG e CAPES.