

Simpósio de Integração Acadêmica

"A Transversalidade da Ciência, Tecnologia e Inovações para o Planeta" SIA UFV Virtual 2021

Ativação de biossíntese de flavonols como mecanismo de resistência da soja a herbivoria por *Anticarsia gemmatalis*

MOREIRA, A. C. H.¹; RAMOS, H.J.O; PINHEIRO, V. J. M.; OLIVEIRA M. G. A.; PINTO, I. P. A.

Email: anna.moreira@ufv.br; humramos@ufv.br; valquiria.pinheiro@ufv.br; malmeida@ufv.br; ian.pinto@ufv.br,
Departamento de Bioquímica e Biologia Molecular (DBB), Universidade Federal de Viçosa (UFV), BIOAGRO-UFV, MG, Brasil.
Área temática: Bioquímica. Grande Área: Ciências Biológicas e da Saúde. Categoria: Pesquisa.

Palavras-chave: Metabolômica, expressão gênica, inibidores de proteases

Introdução

A soja é no Brasil o grão de maior importância para o agronegócio. A lagarta-da-soja, *Anticarsia gemmatalis*, é uma praga desfolhadora que pode causar significativa perda de produção. Na soja, o ataque das lagartas induz a biossíntese de compostos fenólicos tóxicos aos insetos, que pode estar sob regulação da via das lipoxigenases. Outro mecanismo de proteção é a produção de inibidores de proteases (IPs) que atuam no intestino das lagartas levando à redução da capacidade digestiva e consequente morte. A expressão dos genes de defesa na planta pode ser constitutiva ou induzida pela herbivoria.

Objetivos

Identificar vias de resposta à herbivoria por *A. Gemmatalis* em genótipos de soja contrastantes para resistência à lagarta.

Material e Métodos

Expressão gênica Foi construído o nas amostras primer que codifica a vegetais foi enzima utilizando o avaliada por qRTsoftware Primer-PCR. BLAST Foram utilizadas 4 replicatas biológicas de folhas dos Para a análise do perfil Extração de flavonoides de flavonoides genótipos utilizando utilizou-se um sistema resistentes (IAC solução UHPLC acoplado a 17, IAC 100 e IAC metanol:isopropa espectrômetro de 24) e suscetíveis nol: ác. acético massa triplo (UFV 105, BR 16 e (20:79:1)quadrupolo (Agilent) Embrapa 48); não infestadas (NI) e infestadas (I) por 90h pelas lagartas Foram realizados ensaios de atividade enzimática das lipoxigenases totais nos extratos vegetais utilizando ácido linoleico como substrato, bem como a atividade de inibidores enzimáticos utilizando a tripsina e Banana como substrato para a enzima.

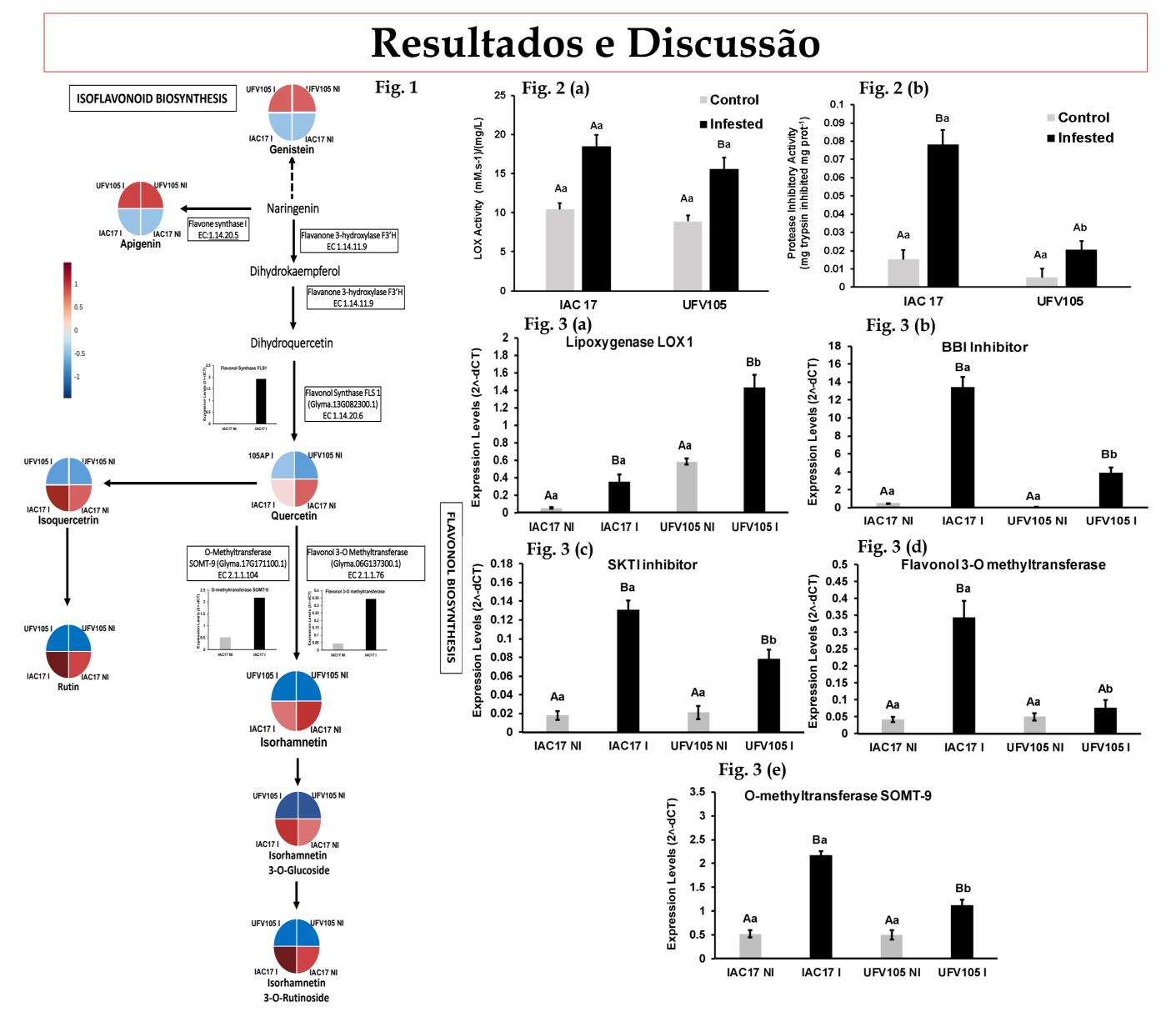


Fig. 1: Via da biossíntese de flavonols. Coloração vermelha indica abundância de flavonoides nos genótipos descritos enquanto que a coloração azul indica baixa abundância.; Fig. 2: Atividades de lipoxigenase (a) e inibidor de protease (b); Fig. 3, (a), (b), (c), (d), (e): Expressão dos genes envolvidos na interação inseto-planta.

A expressão de genes e os níveis de Rutina e Rutinosideos metilados indicaram que a via dos flavanols é ativada na soja resistente ao ataque de lagartas, bem como a produção de Pis.

Conclusões

O mecanismo de resistência ao ataque de inseto nos genótipos de soja pode estar relacionado com a ativação das vias dos flavonols, agindo em sinergismo para reduzir a sobrevivência das lagartas. A identificação dos determinantes genéticos desta cascata regulatória servirá de guia para obtenção de plantas melhoradas geneticamente.

Bibliografia

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant signaling & behavior, 7(10), 1306–1320. https://doi.org/10.4161/psb.21663

Agradecimentos e Apoio Financeiro

