Simpósio de Integração Acadêmica

"A Transversalidade da Ciência, Tecnologia e Inovações para o Planeta" SIA UFV Virtual 2021

Jhenipher Cleyton Fagner Teixeira jhenipher.teixeira@ufv.br

ADY CAMBRAIA JUNIOR ady.cambraia@ufv.br (Orientador)

Isometrias de $\mathbb{H}^2 \times \mathbb{R}$

1. Introdução e Objetivos

As variedades completas simplesmente conexas de dimensão três mais simétricas são as formas espaciais, isto é, o espaço Euclidiano (\mathbb{R}^3), o espaço hiperbólico (\mathbb{H}^3) e a esfera unitária de dimensão três (\mathbb{S}^3). Nos últimos anos tem crescido o interesse sobre o estudo da geometria das superfícies dentro de variedades menos simétricas que as formas espaciais. Em particular, tem crescido o interesse do estudo das superfícies com alguma propriedade geométrica prescrita nas variedades produto $\mathbb{M}^2 \times \mathbb{R}$, onde \mathbb{M}^2 é uma variedade Riemanniana bidimensional. O principal objetivo desta apresentação é descrever as isometrias da variedade homogênea tridimensional $\mathbb{H}^2 \times \mathbb{R}$, onde \mathbb{H}^2 é um modelo do plano hiperbólico e \mathbb{R} a reta real, para isso se faz necessário conhecer as isometrias dos objetos envolvidos.

2. Isometria de $\mathbb R$

Definição 1. Seja \mathbb{M} uma variedade riemanniana. Um difeomorfismo $\varphi: \mathbb{M} \to \mathbb{M}$ é uma isometria de $(\mathbb{M}, g_{\mathbb{M}})$ se φ preserva produto interno, ou seja,

$$\langle \vec{u}, \vec{v} \rangle_{\mathbb{M}} = \langle D_z \varphi(\vec{u}), D_z \varphi(\vec{v}) \rangle$$

para todo $z \in \mathbb{M}$ e para todo $\vec{u}, \vec{v} \in T_z \mathbb{M}$.

Proposição 1. Se $\varphi : \mathbb{R} \to \mathbb{R}$ é uma isometria, então φ é a função identidade ou uma translação ou a reflexão em torno de um ponto de \mathbb{R} .

Teorema 1 (Classificação das Isometrias de \mathbb{R}). $Se\ \varphi: \mathbb{R} \to \mathbb{R} \ \acute{e} \ uma$ isometria, então φ é uma composição de no máximo de três reflexões em uma reta.

3. Isometrias de \mathbb{H}^2

Considere o conjunto $\mathbb{H}^2 = \{ z \in \mathbb{C} \mid Im(z) > 0 \}.$

Definição 2. O bordo assintótico de \mathbb{H}^2 denotado por $\partial_\infty \mathbb{H}^2$ é dado por

$$\partial_{\infty} \mathbb{H}^2 = \{ z \in \mathbb{C} \mid Im(z) = 0 \} \cup \{ \infty \}.$$

Para obter as isometrias do modelo, precisamos de algumas definições e resultados.

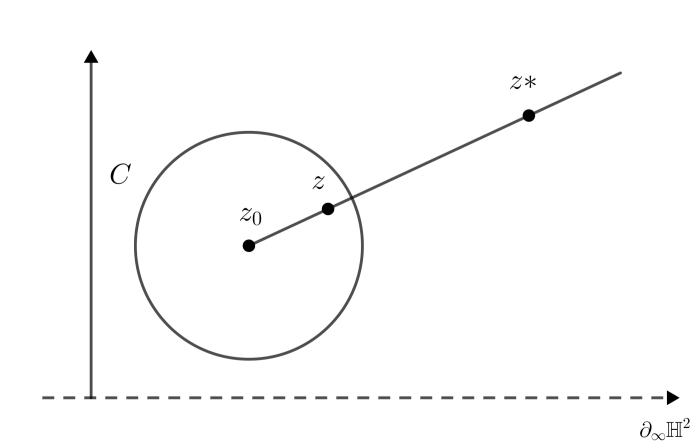
Definição 3. Seja $f: U \to V$ uma função, onde U, V são abertos de \mathbb{C} . Dizemos que f é uma aplicação conforme se preserva ângulos orientados, ou seja, $\sphericalangle(\vec{u}, \vec{v}) = \sphericalangle(D_{z_0} f(\vec{u}), D_{z_0} f(\vec{v}))$, para todo $u, v \in T_{z_0} \mathbb{H}^2$.

Definição 4. Seja $C = C(z_0, R)$ o círculo de centro $z_0 \in \mathbb{C}$ e raio R > 0. A inversão em relação ao círculo $C(z_0, R)$, denotada por I_C , é uma aplicação que envia um ponto $z \neq z_0$ em $z^* \in \mathbb{C}$, onde z^* é um ponto sobre a semirreta que passa pelo centro do círculo no ponto z e verifica

$$|z^* - z_0||z - z_0| = R^2$$

Por definição, $(z^* - z_0) = \lambda(z - z_0)$, logo:

$$I_C(z) = z^* = z_0 + \frac{R^2}{|z - z_0|^2}(z - z_0) = z_0 + \frac{R^2}{|\overline{z} - \overline{z_0}|}$$



Propriedades Seja $I_C: \mathbb{C} \to \mathbb{C}$ dada por $I_C(z) = z$

 $1. I_C(C) = C ;$

2. $\overline{I_C}$ é uma transformação conforme ;

3. I_C leva círculos ou retas em círculos ou retas;

4. $I_C(C_1) = C_1$, se C_1 é ortogonal a C.

Dizemos que uma isometria $\varphi: \mathbb{H}^2 \to \mathbb{H}^2$ é positiva se ela preserva orientação, isto é, $|\vec{u} \ \vec{v}| > 0 \Rightarrow |D_z \varphi(\vec{u}) \ D_z \varphi(\vec{v})| > 0$. Caso contrário, a isometria é negativa.

Seja $T \neq Id_{\mathbb{H}^2}$. Um ponto $z \in \mathbb{H}^2 \cup \partial \mathbb{H}^2$ é fixo se, e somente se, T(z) = z. Como T(z) é um polinômio de grau 2, isso nos motiva a seguinte definição.

Definição 5. Seja $T: \mathbb{H}^2 \to \mathbb{H}^2$ uma isometria positiva de \mathbb{H}^2 , então:

1. Se T tem um único ponto fixo no bordo assintótico $\partial \mathbb{H}^2$ e nenhum em \mathbb{H}^2 então diremos que T é uma isometria parabólica;

2. Se T tem dois pontos fixos no bordo assintótico $\partial \mathbb{H}^2$ e nenhum em

 \mathbb{H}^2 então diremos que T é uma isometria hiperbólica;

3. Se T tem um único ponto fixo sobre \mathbb{H}^2 então diremos que T é uma isometria elíptica.

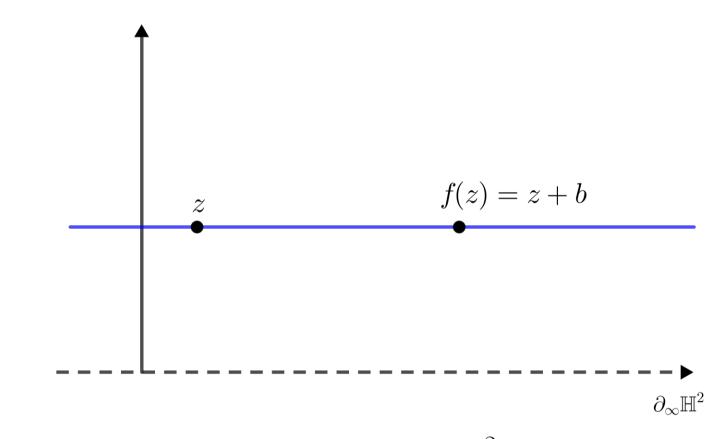
Definição 6. Os horociclos de \mathbb{H}^2 são os círculos tangentes ao bordo assintótico e as retas horizontais de \mathbb{H}^2 .

Proposição 2. A imagem de todo horociclo de \mathbb{H}^2 por uma isometria qualquer de \mathbb{H}^2 é também um horociclo de \mathbb{H}^2 .

4. Isometria Parabólica

Sejam $f \in Isom^+(\mathbb{H}^2)$ e $x_1 \in \partial_{\infty}\mathbb{H}^2$ (único ponto fixo):

1º caso: $x_1 = \infty \Rightarrow f(z) = z + b, z \in \mathbb{H}^2$:

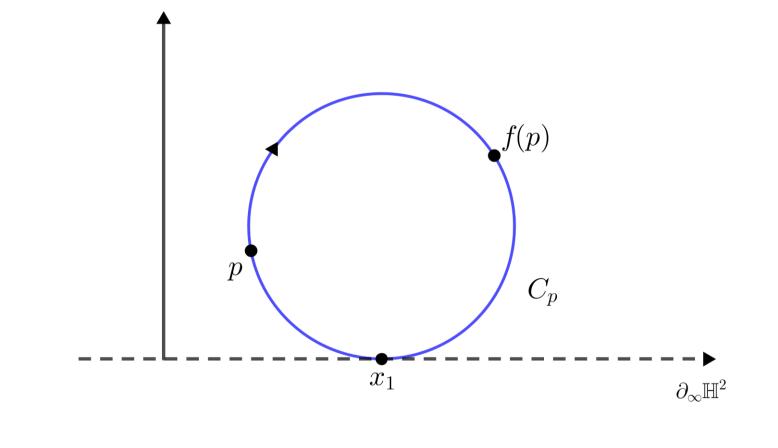


2º caso: $x_1 \in \mathbb{R} \Rightarrow f(z) = \frac{(1+cx_1)z - cx_1^2}{cz + 1 - cx_1}, c \in \mathbb{R}$. Ideia: construir uma isometria R que recaia no caso anterior Sejam $g(z) = \frac{1}{x_1 - z}, R = g \circ f \circ g^{-1} \in Isom^+(\mathbb{H}^2)$. Seja z um ponto fixo de R. Assim:

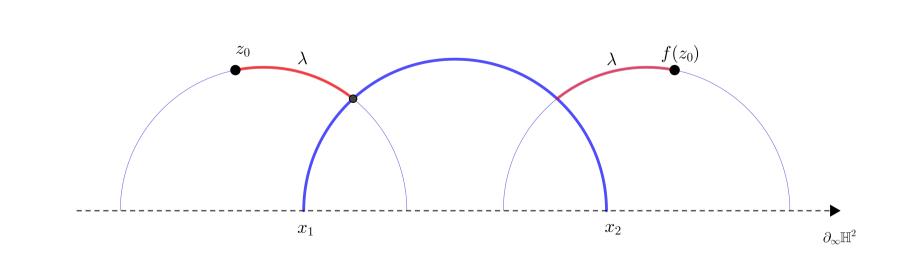
$$R(z) = z \Leftrightarrow f(g^{-1}(z)) = g^{-1}(z) \Leftrightarrow g^{-1}(z) = x_1 \Leftrightarrow z = \infty.$$

Portanto, R é uma translação horizontal.

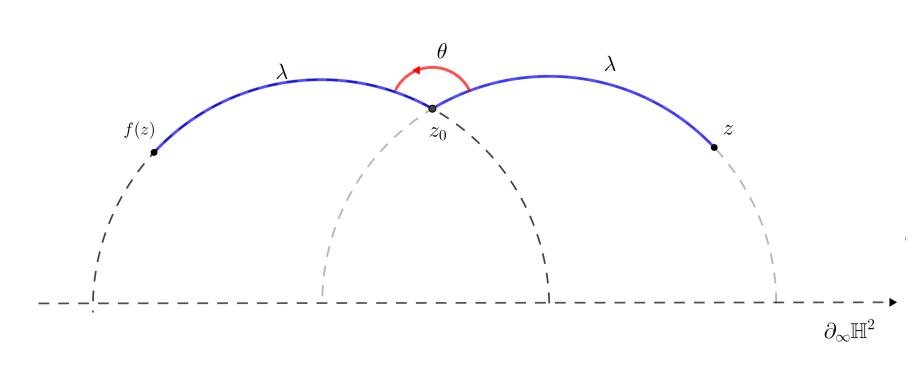
Considere C um horociclo tangente a $\partial_{\infty}\mathbb{H}^2$ no ponto $x_1 \in f = g^{-1} \circ R \circ g$. Temos $f(C) = g^{-1}(R(g(C)))$, onde g(C) é um horociclo tangente a $\partial_{\infty}\mathbb{H}^2$ no ponto $g(x_1) = \infty$, logo g(C) é uma reta horizontal y = k, com $k \in \mathbb{R}_+^*$, assim g(C) é invariante por R, e f(C) = C. Portanto, f fixa todo horociclo tangente a $\partial_{\infty}\mathbb{H}^2$ no ponto x_1 .



5. Isometria Hiperbólica



6. Isometria Elíptica



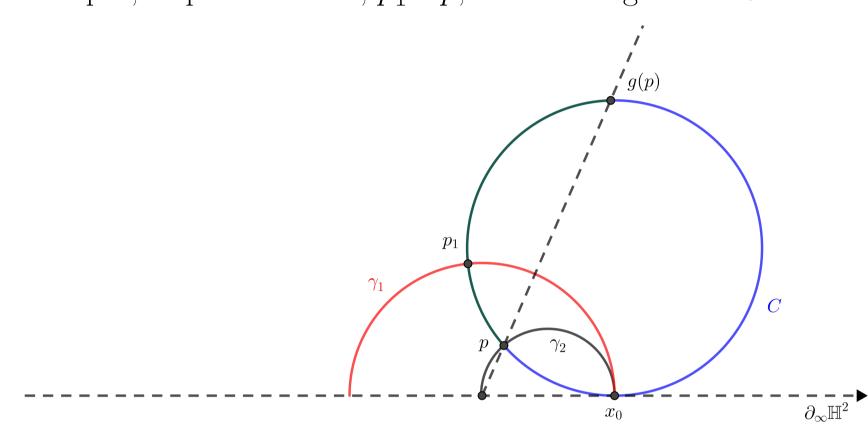
Um resultado clássico na geometria euclideana plana é que toda isometria pode ser escrita como composição de no máximo três reflexões. Em \mathbb{H}^2 temos:

Teorema 2 (Classificação das Isometrias de \mathbb{H}^2). Toda isometria de \mathbb{H}^2 é uma composição de uma ou mais inversões de \mathbb{H}^2 . Mais precisamente, seja $g: \mathbb{H}^2 \to \mathbb{H}^2$ uma isometria,

1. Se g é uma isometria positiva, existem duas inversões I_1, I_2 de \mathbb{H}^2 tais que $g = I_1 \circ I_2$;

2. Se g é uma isometria negativa diferente de uma inversão, existem três inversões I_1, I_2, I_3 de \mathbb{H}^2 tais que $g = I_1 \circ I_2 \circ I_3$.

Demonstração. 1. Sejam g uma isometria parabólica, $x_0 \in \partial_\infty \mathbb{H}^2$, C um horociclo de \mathbb{H}^2 tangente a x_0 no $\partial_\infty \mathbb{H}^2$ e p um ponto qualquer de C. Como g é uma isometria parabólica, então g(C) é um horociclo e pela proposição [2] g(C) = C, logo $g(p) \in C$. Considere $p_1 \in C$ de tal modo que $d_{\mathbb{H}}(p, p_1) = d_{\mathbb{H}}(p_1, g(p))$. Sejam γ_1, γ_2 as geodésicas de \mathbb{H}^2 passando por, respectivamente, p_1 e p, ambas ortogonais a C.



Considere I_1 a inversão por γ_1 e I_2 a inversão por γ_2 . Note que I_1 e I_2 deixam C invariante e, além disso, $x_0 \in \partial_{\infty} \gamma_1 \cap \partial_{\infty} \gamma_2$. De nossa construção temos, $g(p) = I_1(p) = I_1(I_2(p)) = (I_1 \circ I_2)(p)$. Assim, $(I_1 \circ I_2) \circ g^{-1}$ é uma isometria positiva de \mathbb{H}^2 com um ponto fixo em \mathbb{H}^2 e um ponto fixo em $\partial_{\infty}\mathbb{H}^2$. Logo, $(I_1 \circ I_2) \circ g^{-1} = Id$, e portanto, $I_1 \circ I_2 = g$.

2. Seja g uma isometria negativa diferente da inversão e I_3 uma inversão qualquer de \mathbb{H}^2 . Note que $g \circ I_3$ é uma isometria positiva, logo, como foi mostrado acima, temos que existem inversões I_1, I_2 tais que $g \circ I_3 = I_1 \circ I_2$. Compondo ambos os lado com I_3^{-1} , temos $g = I_1 \circ I_2 \circ I_3^{-1} = I_1 \circ I_2 \circ I_3$, pois $I_3^{-1} = I_3$

7. Isometria de $\mathbb{H}^2 \times \mathbb{R}$

Lema 1. Seja

$$f: \mathbb{M}^2 \times \mathbb{R} \to \mathbb{M}^2 \times \mathbb{R}$$

 $(z, t) \mapsto f(z, t)$

 $um\ difeomorfismo.$

 $Se\ f(z,t) = (f_1(z), f_2(t)), \ onde\ f_1 \in Isom(\mathbb{M}^2) \ e\ f_2 \in Isom(\mathbb{R}) \ ent\tilde{ao}$ $f \in Isom(\mathbb{M}^2 \times \mathbb{R}).$

A recíproca deste lema, em geral não é válida. De fato, considere a isometria linear $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$, com coordenadas ((x,y),t) dada pela matriz ortogonal representada na base canônica na seguinte forma:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Em coordenadas, $A(x, y, t) = (x, y \cos(\theta) - t \sin(\theta), y \sin(\theta) + t \cos(\theta)) = (f_1, f_2)$. Observe que $f_1 = (x, y \cos(\theta) - t \sin(\theta))$ e $f_2 = (y \sin(\theta) + t \cos(\theta))$ não são isometrias de \mathbb{R}^2 e \mathbb{R} , respectivamente. Mas no caso em que $\mathbb{M}^2 = \mathbb{H}^2$ a recíproca é verdadeira.

Lema 2. Seja

$$f: \mathbb{H}^2 \times \mathbb{R} \to \mathbb{H}^2 \times \mathbb{R}$$

 $(z, t) \mapsto f = (f_1, f_2)$

um difeomorfismo. Temos

 $f \in Isom(\mathbb{H}^2 \times \mathbb{R}) \ se, \ e \ somente \ se, f_1 \in Isom(\mathbb{H}^2) \ e \ f_2 \in Isom(\mathbb{R}).$

Referências

[1] Cambraia Jr., A.; Imersões Mínimas e Conformes em $\mathbb{M}^2 \times \mathbb{R}$, Dissertação de Mestrado, Pontifícia Universidade Católica do Rio de Janeiro, 2009.

[2] Churchill, R.V; Variáveis complexas e suas aplicações, McGraw-Hill do Brasil 1980

do Brasil, 1980.

[3] Do Carmo, M. P.; Geometria Diferencial de Curvas e Superfícies:
Revisada e Atualizada Segunda Edição. Publicações Courier Dover,

2016.
[4] Do Carmo, M. P.; Geometria Riemanniana. Instituto de Matemática Pura e Aplicada, 1988.

[5] Earp, R. S.; Toubiana, E.; Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini, Paris, 2009.

[6] Fraleigh, J. B. A first course in abstract algebra. Pearson Education India, 2003.

[7] Lima, Elon Lages. Isometrias. SBM, 1996.