

Simpósio de Integração Acadêmica

"A Transversalidade da Ciência, Tecnologia e Inovações para o Planeta" SIA UFV Virtual 2021

Uso de análises morfométricas no testículo de camundongos intoxicados por metais pesados

Universidade Federal de Viçosa

Iara Soares¹ <u>iara.soares@ufv.br</u>; Sérgio Luis Pinto da Matta²<u>smatta@ufv.br</u>; Francielle de Fátima Viana Santana <u>franciellefsantana@gmail.com</u> ³; Amanda Alves Lozi⁴ <u>amanda.lozi@ufv.br</u>; Janaina da Silva⁵ <u>janacbio18@gmail.com</u>; Luiz Carlos Maia Ladeira⁶<u>luizmaialadeira@gmail.com</u>;

Área de conhecimento: Ciências Biológicas e da Saúde/Área temática: Morfologia

Modalidade : Pesquisa

Palavras-chave: Metais pesados, Morfometria, Testículos.

Introdução

Os metais pesados apresentam o potencial para tornarem-se tóxicos nos sistemas biológicos. A Agência de Substâncias Tóxicas e Registros de Doenças - ATSDR (2017) elenca o cádmio (Cd), chumbo (Pb), cromo (Cr VI) e níquel (Ni) como emergências de saúde ambiental pois causam impactos na saúde humana. Embora o arsênio seja um semimetal, em suas formas oxidadas arsenato (As+5) e arsenito (As+3) é igualmente considerado um metal pesado perigoso devido aos seus efeitos tóxicos. Nos testículos, esses metais pesados podem causar danos morfológicos e funcionais que ocorrem devido ao papel do ambiente atuando cronicamente nos indivíduos

Objetivos

Este estudo tem por objetivo determinar através de análises histomorfométricas os mecanismos toxicológicos de ação dos metais pesados As+5, As+3, Cd, Pb, Cr (VI) e Ni que levam há danos testiculares e estabelecer uma ordem de toxicidade entre eles

Material e Métodos

Foram utilizados 42 camundongos Swiss em idade reprodutiva (140 dias), distribuídos aleatoriamente em sete grupos experimentais (n=6). A exposição aos metais pesados foi feita em doses semanais, via intraperitoneal. O grupo 1 recebeu 0,7mL de solução salina 0,9% (controle) e os demais grupos 1,5 mg/Kg de As+5, As+3, Cd, Pb, Cr(VI) e Ni, durante seis semanas. Os animais foram eutanasiados após 42 dias, sendo os testículos retirados e pesados As análises morfométricas permitiram quantificar alterações funcionais no testículo.

Com a contagem de pontos sobre os componentes do parênquima testicular, conseguimos a proporção e o volume, possibilitando a comparação entre os grupos tratados e controle. Os dados não paramétricos foram comparados por meio do teste de Kruskal-Wallis e os dados paramétricos por meio de análise de variância (ANOVA) seguida pelo teste de Student Newman-Keuls e foram considerados significativos quando p≤0,05

Resultados e Discussão

Após administração crônica de metais pesados, observou que Cd e Ni foram capazes de afetar a morfometria do tecido testicular. O Ni causou aumento do volume de túnica própria nos túbulos seminíferos e da proporção e do volume de espaço linfático no intertúbulo de animais expostos a esse metal. O Cd alterou componentes intertubulares diminuindo a proporção de vasos sanguíneos e aumentando a de espaços linfáticos

Conclusões

Esses resultados sugerem que, como a túnica própria faz parte da barreira hematotesticular, o crescimento da mesma pode representar um mecanismo de proteção contra as ações dos metais pesados. Já o aumento de espaço linfático está relacionado a sua função de saída de substâncias tóxicas presentes no tecido, após a exposição ao metal, para manter a homeostase testicular após a intoxicação. Os demais metais como As+5, As+3 Pb e Cr (VI) não foram capazes de alterar os parâmetros analisados, nas doses utilizadas. Com base na quantidade de alterações causadas por cada metal, a ordem de toxicidade entre os metais estudados neste trabalho estabelece que Ni>Cd>Pb=As+3>Cr(VI)>As+5.

Apoio Financeiro

Agradecimentos

