Simpósio de Integração Acadêmica

"A Transversalidade da Ciência, Tecnologia e Inovações para o Planeta" SIA UFV Virtual 2021

Números na categoria de conjuntos

Joice Graziele Martins da Silva - Universidade Federal de Viçosa - Departamento de Matemática - joice.graziele@ufv.br Rogério Carvalho Picanço - Universidade Federal de Viçosa - Departamento de Matemática - rogerio@ufv.br Trabalho de pesquisa em Álgebra - Ciências Exatas e tecnológicas Palavras-chave: números, teoria de conjuntos, teoria de categorias

Introdução

Os números são de suma importância para a matemática, desde suas origens até os dias atuais. Algumas das comparações que o homem formula, estão ligadas conscientes ou não, às noções aritméticas. A princípio pela necessidade de contagens de coleções, como por exemplo dos animais de criação, e até mesmo conceito de acréscimos. Muito tempo depois, os números inteiros e racionais surgiram de forma intuitiva, e já na Grécia Antiga, através da descoberta do $\sqrt{2}$, os números reais apareceram. Em 1889, Guiseppe Peano apresentou em Arithmetica Principia Nova Methodo Exposita pela primeira vez, uma construção axiomática dos números naturais. O nosso interesse é expressar tais axiomas em termos de conjuntos e funções, por isso, admitiremos que existe um conjunto \mathbb{N} e uma função σ definida por $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$. E será com essa abordagem que iniciaremos a construção dos números na Teoria de Conjuntos. A princípio estruturaremos os Números Naturais com todas suas características algébricas, incluindo as operações de soma, produto e uma relação de ordem. Todas elas bem definidas. A partir do Naturais, usaremos convenientes relações de equivalencia para a construção dos Inteiros e Racionais. E de modo analogo ao feito para os Naturais, as propriedades de soma, produto e relações de ordem serão introduzidas. E para construírmos os Números Reais, utilizaremos uma abordagem mais sofisticada, os Cortes de Dedekind, e por fim apresentar algumas propriedades importantes de tal estrutura.

Números naturais

Axiomas de Peano

P.1: Existe um elemento em \mathbb{N} , que denotaremos por 0 e chamaremos de zero, que não está na imagem de σ , isto é, $0 \notin Im(\sigma)$.

 $\boldsymbol{P.2}$: A função σ é injetora.

 $\boldsymbol{P.3}$: Seja A um subconjunto de $\mathbb N$ tal que

 $\mathbf{I)} \ 0 \in A.$

II) Se $n \in A$, então $\sigma(n) \in A$.

Então, $A = \mathbb{N}$.

Proposição 1.1. $Im(\sigma) = \mathbb{N}^+$.

Definição 1.2. Dado um natural $n \neq 0$, temos que o número natural m, tal que $\sigma(m) = n$, chama-se antecessor de n e, n chama-se sucessor de m.

Operações com elementos de \mathbb{N}

Definição 1.3. (Soma) Sejam m e n números naturais. Definiremos a soma do seguinte modo:

I) m + 0 = m

II) $m + \sigma(n) = \sigma(m+n)$

Definição 1.4. (Produto) Sejam $m \in \mathbb{N}$, um número natural dado. Definiremos o produto como:

 $\mathbf{I)}\ m \cdot 0 = 0$

 $\mathbf{II)}\ m \cdot \sigma(n) = m \cdot n + m$

Proposição 1.5. Seja $m \in \mathbb{N}$ um número natural dado. Então a soma m+n e o produto $m\cdot n$ estão definidas para todo natural $n \in \mathbb{N}$.

Relação de Ordem em $\mathbb N$

Definição 1.6. Sejam m e n números naturais. Diremos que m é menor ou igual a n, se existir um r natural tal que m+r=n.

Esta relação é uma relação de ordem, ou seja, é reflexiva, anti-simétrica e transitiva.

Teorema 1.7 (Princípio da Boa Ordem). *Todo subconjunto não vazio de números naturais, possui um menor elemento.*

Números inteiros

Definição 1.8. Sejam $(a,b),(c,d)\in\mathbb{N}$ x \mathbb{N} . Diremos que $(a,b)\sim(c,d)$ se e somente se a+d=b+c.

Teorema 1.9. A relação definida acima é de equivalência, ou seja, ela é reflexiva, simétrica e transitiva.

$$\overline{(a,b)} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid (x,y) \sim (a,b)\}.$$

Definição 1.10. Vamos denotar por \mathbb{Z} o conjunto $\mathbb{N} \times \mathbb{N} / \sim$ e chamar de números inteiros, os elementos desse conjunto.

Operações com elementos de $\mathbb Z$

Definição 1.11. Sejam $\alpha = \overline{(a,b)}$ e $\beta = \overline{(c,d)}$ elementos de \mathbb{Z} . Definimos a soma de $\alpha + \beta$ e o produto $\alpha \cdot \beta$ por

$$\alpha + \beta = \overline{(a+c,b+d)}$$
$$\alpha \cdot \beta = \overline{(ac+bd,ad+bc)}$$

Relação de ordem em $\mathbb Z$

Definição 1.12. Dados os números inteiros $\alpha = \overline{(a,b)}$ e $\beta = \overline{(c,d)}$, diremos que α é menor ou igual a β se $a+d \leq b+c$.

Teorema 1.13 (Princípio da Boa Ordem). $Seja \ A \subset \mathbb{Z}$ um conjunto não vazio de inteiros não negativos. Então, A contém um elemento mínimo, ou seja, $\exists a_0 \in A$ tal que $a_0 \leq a$, $\forall a \in A$.

Números racionais

Definição 1.14. Sejam $a, c \in \mathbb{Z}$ e $b, d \in \mathbb{Z}^*$. Definimos a relação \sim por $(a, b) \sim (c, d)$ quando ad = bc. Esta relação é de equivalência.

$$\frac{a}{b} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z}^* | (x, y) \sim (a, b)\}$$

Definição 1.15. Indicaremos por \mathbb{Q} , o conjunto $\mathbb{Z} \times \mathbb{Z}^*/\sim$ e chamaremos de Números Racionais os elementos de \mathbb{Q} .

Operações com elementos de Q

Definição 1.16. Sejam $\alpha = \frac{a}{b} e \beta = \frac{c}{d}$ elementos de \mathbb{Q} . Definimos a soma de α e β e o produto da seguinte forma:

$$\alpha + \beta = \frac{ad + bc}{bd}$$
$$\alpha \beta = \frac{ac}{bd}.$$

Relação de ordem em $\mathbb Q$

Definição 1.17. Sejam $\frac{a}{b}$ e $\frac{c}{d}$ números racionais com b, d > 0. Dizemos que $\frac{a}{b}$ é menor ou igual a $\frac{c}{d}$ quando $ad \le bc$ e denotamos por $\frac{a}{b} \le \frac{c}{d}$. Esta relação está bem definida e é de ordem.

Teorema 1.18. A função $i: \mathbb{Z} \to \mathbb{Q}$, definida por $i(n) = \frac{n}{1}$ é injetora e preserva as operações e relações de ordem de \mathbb{Z} em \mathbb{Q} no seguinte sentido:

1. i(m+n) = i(m) + i(n)

 $2. i(m \cdot n) = i(m) \cdot i(n)$

3. Se $m \leq n$, então $i(m) \leq i(n)$.

Números reais

Cortes de Dedekind

Definição 1.19. Seja $A \subset Q$. Dizemos que A é um Corte de Dedekind se possui as seguintes propriedades:

 $I) A \neq \mathbb{Q}.$

II) Dado que $x \in A$, se $y \in \mathbb{Q}$ e $x \leq y$, então $y \in A$.

III) Dado que $x \in A$, existe $y \in A$ tal que y < x.

Lema 1.20. Sejam A, b $\subset \mathbb{Q}$, então as seguintes afirmações são válidas:

- I) O conjunto definido por $M = \{r \in \mathbb{Q} \mid r = a + b, a \in A \ e \ b \in B\}$ é um Corte de Dedekind.
- II) O conjunto $M = \{r \in \mathbb{Q} \mid -r < c \text{ para algum } c \in \mathbb{Q} A\}$ é um Corte de Dedekind.
- III) Seja $0 \in \mathbb{Q}$ A e $0 \in \mathbb{Q}$ B. O conjunto $M = \{r \in \mathbb{Q} \mid r = ab, a \in A \ e \ b \in B\}$ é um Corte de Dedekind.
- IV) Suponha que exista $q \in \mathbb{Q}$ A tal que q > 0. o Conjunto definido por $M = \{r \in \mathbb{Q} \mid r > 0 \ e^{\frac{1}{r}} < c, \ para \ algum \ c \in \mathbb{Q} A\} \ \'e$ um Corte de Dedekind.

Construção dos números reais

Definição 1.21. O conjunto dos números reais, denotado por \mathbb{R} , é definido por:

 $\mathbb{R} = \{ A \subseteq \mathbb{Q} \mid A \text{ seja um Corte de Dedekind} \}$

Conclusão

Finalizamos assim a construção dos números na Teoria dos Conjuntos. Partimos dos três Axiomas de Peano, com o objetivo de estruturar os Números Naturais com todas suas características algébricas, incluindo as operações de soma, produto e uma relação de ordem. Todas elas bem definidas.

A partir disso, fizemos a construção dos Números Inteiros e Racionais apoiando-se na construção dos Naturais com o auxílio de convenientes relações de equivalência. E de modo analogo ao feito para os Naturais, introduzimos as propriedades de soma, produto e relações de ordem.

Já a construção dos Números Reais, utilizamos uma abordagem mais sofisticada, com os Cortes de Dedekind e novamente inserimos algumas propriedades importantes de tal estrutura.

Referências bibliográficas

- 1 MILIES, F. C. P. e COELHO S. P. *Números: Uma Introdução Matemática*. 3. ed. São Paulo: Editora da Universidade de São Paulo, 2001.(Acadêmica: 20).
- 2 MACHADO, G. M. *A construção dos números*. São Carlos, 2014: (Trabalho de Conclusão do Curso).
- 3 PONTES, K. M. Existência e unicidade dos números reais via Corte de Dedekind. João Pessoa, 2014. (Dissertação (Mestrado) UFPB/CCEN).

Apoio financeiro

CNPq - Centro Nacional de Desenvolvimento Científico e Tecnológico

