Simpósio de Integração Acadêmica "A Transversalidade da Ciência, Tecnologia e Inovações para o Planeta" SIA UFV Virtual 2021

Efeito da rugosidade na fotocristalização do Te em filmes finos de MoTe₂

Matheus Almeida de Souza¹; Paulo Victor Sciammarella¹; Ray Nascimento Maronesi¹; Maria Ivonete Nogueira²; Juan Carlos González²; Luciano de Moura Guimarães¹; Eduardo Nery Duarte de Araújo¹

matheus.a.souza@ufv.br; paulo.s@ufv.br; ray_maronesi@hotmail.com; ivonete@fisica.ufmg.br; gonzalez@fisica.ufmg.br; lucianomoura@ufv.br; eduardo.araujo@ufv.br

¹Universidade Federal de Viçosa; Centro de Ciências Exatas; Departamento de Física; ²Universidade Federal de Minas Gerais, Departamento de Física

Fotocristalização, Coeficiente de Avrami, Rugosidade

Ciência Exatas e tecnológicas; Ciência Exatas e da Terra; Pesquisa

Introdução

O ditelureto de molibdênio (MoTe₂) pertence a uma nova bidimensionais materiais denominados classe de dicalcogenetos de metal de transição (TMDs). O MoTe₂ pode existir na fase semicondutora 2H, fase metálica 1T e fases semimetálicas 1T 'e Td, caracterizado por sua estabilidade, estrutura cristalina e propriedades optoeletrônicas [1]. Neste trabalho produzimos filmes na fase 1T'-MoTe₂ utilizando a técnica de sublimação em espaço reduzido (CSS), em colaboração com a Universidade Federal de Minas Gerais (UFMG). Trabalhos recentes têm mostrado que a incidência de luz visível no MoTe₂ pode promover a transição de fase amorfa para cristalina do telúrio remanescente do processo de recozimento [2, 3]. Algumas trabalhos apresentam a cristalização do telúrio como resultado de efeitos térmico, enquanto outros trabalhos argumentam, no entanto, que a excitação eletrônica tem uma contribuição importante para explicar essa mudança de fase fenômeno [4]. Os resultados aqui apresentados mostram que a cristalização do Te presente no MoTe₂ crescido pela técnica CSS é consistente com a teoria de Kolmogorov-Johnson-Mehl-Avrami (KJMA) para o processo geral de cristalização [5]. O objetivo deste trabalho é investigar os efeitos da rugosidade da superfície na fotocristalização em filmes finos MoTe₂ crescidos por CSS, para isso investigamos o morfologia, composição química e rugosidade das amostras e fotocristalização de telúrio amorfo na fase semimetálica do MoTe₂. Realizamos medições de microscopia eletrônica de varredura (MEV), espectroscopia de dispersão de energia de Raio-X (EDS), microscopia de força atômica (AFM), espalhamento Ramam para caracterizar a emergência e evolução dos modos de telúrio cristalino em MoTe₂.

Síntese dos filmes finos de MoTe₂

a) 30 minutes	90 minutes	120 minutes	150 minutes	180 minutes	a)	b)	
81 '04V' William 17.00 2.pm	SEL (183 ⁴⁷ William) - 27000 ⁻ Jyun	81 104 Million 2/00 Jun — 1	йг бөх мобьун	80 104 William x1/80 Jun —	SW 25 20 20 20	14 14 S 13 13 12 12	Ŧ
b)					is 15 –		∮ _

A síntese dos filmes finos de MoTe₂ foi realizada usando a técnica de sublimação em espaço reduzido (CSS, closed space sublimation)[5]. Primeiramente, foram sintetizados filmes finos de Mo (99,9%) sobre Si(1,1,1) por sputtering, em baixo vácuo (Figs. 1a e 1b). Esses filmes então sofreram oxidação, até geram um filme de MoO₃ (Fig. 1c). Em seguida, os filmes passam pela etapa de telurização, dentro de um sistema de CSS (Fig. 1d). Ajustando-se a temperatura e o tempo de crescimento (t_{Te}) , obtiveram-se filmes de MoTe₂ predominantemente na fase 1T' (Figs. 1E e 1d), com 5 nm de espessura.

Figura 1: a) Sistema de revestimento por pulverização catódica. b) Formação do filme precursor de Mo no Si/SiO₂ substrato. c) Oxidação do precursor Mo devido ao oxigênio, formando uma camada de molibdênio óxido MoO₃. d) Sistema de sublimação em espaço fechado, onde ocorre a etapa de telurização. e) Formação da fase 1T 'de MoTe2 pela evaporação do telúrio na telurização Passo. f) Imagens de microscopia óptica dos filmes semimetálicos de

tempo Figura 2: a) Imagem de microscopia eletrônica de varredura (MEV) dOS filmes finos 1T'-MoTe₂, 7000x. b) Imagem de microscopia eletrônica de varredura (MEV) dos filmes finos 1T'-MoTe₂,2700x..

Figura 3: a) Imagem de microscopia de força Atômica (AFM) de filmes finos de 1T'-MoTe₂ de uma área 10 µm x 10 μm. **b)** Imagem de microscopia de força Atômica (AFM) de filmes finos de 1T'-MoTe₂ de uma área 5µm x 5µm.

tempo

Universidade Federal

le Vicosa

Figura 4: a) Gráfico da Rugosidade da superfície do filme versus o tempo de telurização. b) Gráfico da Rugosidade RMS das regiões sem aglomerados cristalinos de Te na superfície do filmes versus o tempo de telurização.

Figura 5: Evolução temporal dos espectros dos filmes finos de 1T'-MoTe₂ com potência entre 0,85-1 mW.

Fotocristalização

A cristalização fotoinduzida está relacionada a mudança de estado de uma estrutura amorfa para uma cristalina durante exposição à luz. Em materiais à base de telúrio (calcogênio) observa-se uma cristalização fotoinduzida do telúrio na rede desse materiais, em medidas de espalhamento Raman [2]. Uma das formas de monitorar o surgimento e evolução da fase cristalina deste elemento é usando a espectroscopia Raman. Dois modos fonônicos do Te cristalino, que são ativos e intensos no Raman, estão em ~122 cm⁻¹ (modo A_1) e em ~140 cm⁻¹ (modo E^2). Através do surgimento e evolução no tempo destes modos, durante a exposição ao laser, pode-se avaliar o crescimento da fase cristalina do Te [2]. Esse fenômeno pode ser consequência de um efeito puramente térmico ou ter uma contribuição de efeitos fotoinduzidos (excitação eletrônica) [3]. O modelo utilizado para descrever a cinética de cristalização nesse trabalho se baseada na teoria de KJMA modificada, que descreve a nucleação e crescimento da nova fase cristalina em um regime isotérmico e não isotérmico [4]. A base da teoria KJMA é a equação de Avrami da seguinte forma:

 $R(t) = 1 - e^{-(Kt)^{\beta}}$

Onde R(t) é a fração do total de volume cristalizado, β é o expoente de Avrami e K é a MoTe₂ sintetizados.

Resultados e Discussão

Medidas de microscopia eletrônica de varredura (MEV) e espectroscopia de dispersão de energia (EDS) foram realizadas para investigar a morfologia de nosso filmes finos de 1T'- Mote₂ (Figs. 2a e 2b). Estas análises mostraram que o telúrio está espalhado sobre o superfície dos filmes, formando cristalinos localizados, aglomerados cuja distribuição depende do tempo de telurização. Realizando medidas de microscopia de força atômica (AFM) (Figs. 3a e 3b), conseguimos obter a rugosidade da superfície como um função do tempo de telurização do filme de toda superfície, (Fig. 4a), e de regiões sem aglomerados cristalinos de Te localizadas, onde ocorrer a fotocristalização (Fig. 4b).

Realizamos medições Raman de evolução temporal nos filmes finos de 1T'-MoTe₂ sintetizados com diferentes tempos de telurização, mantendo parâmetros da medida fixos. Usando o laser de 633 nm, uma potência entre 0,85-1 mW (Fig. 5). Analisando os dados, obtivemos uma curva para cada filme, e ajustamos a linearização da equação de Avrami, os resultados são mostrados nas Fig. 5. Os coeficientes Avrami obtidos estão na Fig. 7a, bem como a relação do coeficiente de Avrami com o rugosidade dos filmes na Fig. 7b. As taxas de reação efetiva de Avrami obtidos estão na Fig. 7c, bem

Figura 6 : Curvas de linearização da equação de Avrami com os dados obtidos nos mapas temporais dos filmes finos de 1T'-MoTe₂ na potência entre 0,85-1 mW.

Figura 7: a) Gráfico de β versus t_{Te} na potência entre 0,85-1mW. b) Plot de β versus Rugosidade RMS das regiões sem aglomerados cristalinos de Te na superfície do filmes. c) Gráfico de K versus t_{Te} na potência entre 0,85-1mW. d) Plot de K versus Rugosidade RMS das regiões sem aglomerados cristalinos de Te na superfície do filmes.

Bibliografia

[1] Yanpeng Qi, Pavel G. Naumov, Mazhar N. Ali, Catherine R. Rajamathi, Walter Schnelle, Oleg Barkalov, Michael Hanand, Shu-Chun Wu, Chandra Shekhar, Yan Sun, Vicky Süÿ, Marcus Schmidt, Ulrich Schwarz, Eckhard Pippel, Peter Werner, Reinald Hillebrand, Tobias Förster, Erik Kampert, Stuart Parkin, R. J. Cava, Claudia Felser, Binghai Yan, Sergey A. Medvedev. Superconductivity in Weyl SemimetalCandidate MoTe2

[2] Shao-Yu Chen, Carl H. Naylor, Thomas Goldstein, A. T. Charlie Johnson, and Jun Yan. Intrinsic Phono Bands in High-Quality Monolayer T' Molybdenum Ditelluride. ACS Nano 2017, 11, 814-820.

[3] Maia, Paulo Victor Sciammarella; Efeitos fotoinduzidos em filmes de CdTe sob medidas micro Raman.Viçosa, Minas Gerais, 2016.

[4] Alexander V. Kolobov, Paul Fons, and Junji Tominaga; Athermal amorphizatio of crystallized chalcogenide glasses and phase-change alloys; Phys. Status Solidi B 251, No. 7, 12971308 (2014).

[5] J.Farjas, P.Roura. Modication of the Kolmogorov-Johnson-Mehl Avrami rate equation for non-isothermal experiments and its analytical solution. GRMT, Department of Physics, University of Girona, Campus Montilivi, Edif. PII, E17071 Girona, Catalonia, Spain; Article in Acta Materialia December 2008.

[6] E. Sanchez-Montejo, G. Santana, A. Domínguez, L. Huerta, L. Hamui, M. LopezLopez, H. Limborço, F.M. Matinaga, M.I.N. da Silva, A.G. de Oliveira, J.C. Gonzalez, O. de Melo. Phase stability inMoTe2 prepared by low temperature Mo tellurization using close space isothermal Te annealing. Materials Chemistry and Physics Volume 198, 1 September 2017, Pages 317-323.

Agradecimentos

Agradecimento às pessoas e entidades que ajudaram neste trabalho. Professor Leandro Rizzi, Departamento de Física, Universidade Feral de Viçosa (UFV). Agências brasileiras de fomento FAPEMIG e CNPq.

constante cinética de Avrami, definida como taxa

de reação efetiva.