

Simpósio de Integração Acadêmica

Inteligência Artificial: A Nova Fronteira da Ciência Brasileira SIA UFV Virtual 2020

PROPRIEDADES ENERGÉTICAS DE CLONES DE Eucalyptus globulus

Universidade Federal de Viçosa

Juliana Dias de Melo¹, Angélica de Cássia Oliveira Carneiro¹, Lawrence Pires de Oliveira², Êmilly Wakim de Almeida¹, Samuel Fernandes de Souza¹ ¹ Departamento de Engenharia Florestal; ² Departamento de Química Juliana.d.melo@ufv.br, cassiacarneiro1@gmail.com, lawrence.oliveira@ufv.br,

wakimemilly@gmail.com, samuel.f.souza@ufv.br Carvão vegetal, Energia, Eucalyptus globulus. Recursos Florestais e Engenharia Floresta, Centro de Ciências Agrárias Pesquisa

Introdução

Dentre as espécies mais cultivadas no Brasil, pode-se destacar o Eucalyptus globulus, utilizado para a produção de polpa celulósica e extração de óleos essenciais de suas folhas, porém, é escassa a literatura a respeito das propriedades da sua madeira para fins energéticos, ainda que algumas características qualificam a espécie para produção de energia. Com isso, o objetivo deste trabalho foi avaliar o potencial energético da madeira de clones de Eucalyptus globulus.

Objetivos

Os objetivos deste trabalho foram obter a densidade básica, analisar a composição química e o poder calorífico da madeira de clones Eucalyptus globulus a fim de avaliar seu potencial energético.

Material e Métodos

Neste trabalho foram utilizados quatro clones de Eucalyptus globulus. Todas as análises foram realizadas no LAPEM. A densidade básica da madeira foi determinada pelo metóodo de imersão em água, de acordo com a norma ABNT NBR 11941 (ABNT, 2003). O poder calorífico superior foi determinado de acordo com a norma ABNT NBR 8633 (ABNT, 1984), utilizando-se uma bomba calorimétrica adiabática. Os teores de extrativos da madeira foram determinados em duplicatas, de acordo com a norma TAPPI 204 om-88 (TAPPI, 1996. Os teores de lignina insolúvel foram determinados em duplicata pelo método Klason, modificado de acordo com o procedimento proposto por Gomide e Demuner (1986). A lignina solúvel foi determinada por espectrometria, conforme Goldschimid (1971). A densidade energética foi estimada com base na Equação 1.

$DE = DB \times PC/1000$

Em que:

.

• • • • • •

. DE = densidade energética expressa em Mcal/m³; DB = densidade básica expressa em kg/m³; PC = poder calorífico superior expresso em kcal/Kg.

Apoio Financeiro

Resultados e Discussão

Os resultados foram submetidos à análise de variância (ANOVA) e, quando estabelecidas diferenças significativas, os tratamentos foram comparados entre si por meio do teste de Tukey a 5% e 10% de significância. Na Tabela 1 são apresentados os valores médios da composição química. Em amarelo se destaca o clone com maior potencial para fins energéticos e em vermelho o clone que apresenta o menor.

Clone	Ligninas *	Holoceluloses	Extrativos **
25	31,7 (1,4) ab	64,7 (1,9) ab	3,6 (0,6) b
26	30,6 (1,0) b	65,9 ^(1,2) a	3,5 (0,5) b
27	33,8 (1,6) a	61,1 (1,8) b	5,1 (0,5) ab
28	31,2 (1,6) ab	63,3 (2,0) ab	5,5 (0,8) a

*Médias (desvio padrão) seguidas de mesma letra na coluna não diferem pelo Teste Tukey a 10% de significância; *Médias (desvio padrão) seguidas de mesma letra na coluna não diferem pelo Teste Tukey a 5% de significância;

A Tabela 2 apresenta os valores médios do poder calorífico superior, densidade básica e densidade energética. Analisando a Tabela 2, observa-se que não houve diferença significativa no poder calorifico. Os clones 25, 27 e 28 apresentam maior densidade básica. Observa-se que os clones 27 e 28 apresentam maiores densidades

Clone	Poder	Dens. Básica**	Dens.
	Calorífico *		Energética**
25	4701 (63)	0,583 (0,027) a	2679 (128) ab
26	4686 (19)	0,515 (0,021) b	2462 (54) b
27	4686 (19)	0,600 (0,013) a	2843 (50) a
28	4646 (40)	0,580 (0,013) a	2721 (82) a

*Não foram observadas diferenças significativas entre as médias pela ANOVA a 10% e 5% de significância *Médias (desvio padrão) seguidas de mesma letra na coluna não diferem pelo Teste Tukey a 5% de significância;

Conclusões

Com base nos resultados, pode-se concluir que o clone 27 apresenta maior teor de lignina, maior densidade básica e energética, portanto o mais indicado para a produção de energia.

Bibliografia

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT.NBR 8633: carvão vegetal: determinação do poder calorífico. Rio de Janeiro. 1984. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT.NBR 11941: carvão vegetal: determinação da densidade básica. Rio de Janeiro: 1984. VITAL, B. R. Métodos de determinação de densidade da madeira. Viçosa: SIF, 1984. 21p. (Boletim Técnico, 1).

Agradecimentos

