

Simpósio de Integração Acadêmica

Inteligência Artificial: A Nova Fronteira da Ciência Brasileira SIA UFV Virtual 2020

Sais de *bis(N*-butilsulfonilditiocarbimato)zincato(II) com diferentes cátions nitrogenados e fosforados e sua ação inibidora do crescimento micelial de *Rhyzoctonia solani*

Bárbara Thiemi Mota Kakudate⁽¹⁾, Mayura Marques Magalhães Rubinger⁽¹⁾, Anderson da Silva Rabello⁽¹⁾, Ingryd Egydio Martins⁽¹⁾, Laércio Zambolim⁽²⁾

(1)Departamento de Química - UFV; (2)Departamento de Fitopatologia - UF barbara.kakudate@ufv.br; mayura@ufv.b

Palavras-chave: Ditiocarbimato; antifúngico; sais complexos de zinco

Área de conhecimento: Ciências exatas e tecnológicas; Área temática: Química Orgânica; Modalidade: Pesquisa

Introdução

O ditiocarbamato é uma classe orgânica bem reportada na literatura. É utilizada na agricultura como fungicida desde a década de 1940. Esta classe se assemelha à dos ditiocarbimatos, porém estes apresentam propriedades físicas e químicas diferentes^[2].

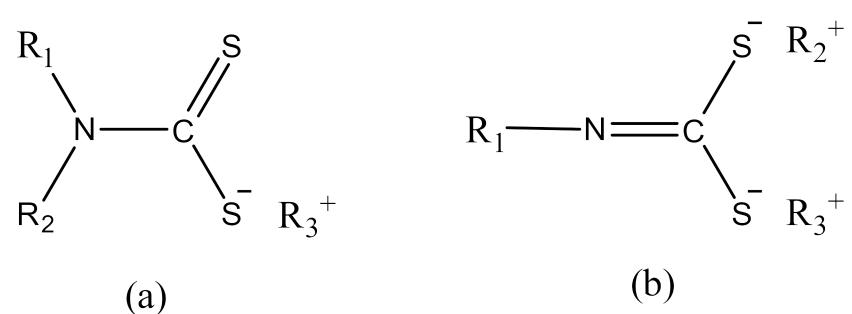


Figura 1: Estruturas gerais de ânions ditiocarbamato (a) e ditiocarbimato (b).

Objetivos

Investigar a atividade antifúngica frente a *Rhyzoctonia solani* de 4 novos sais complexos de zinco, com o ligante *N*-butilsulfonilditiocarbimato e diferentes cátions.

$\begin{array}{c|c} \textbf{Material e M\'etodos} \\ \hline \\ \textbf{CH}_3(\textbf{CH}_2)_2\textbf{CH}_2\textbf{SO}_2\textbf{NH}_2 & \textbf{CS}_2, \textbf{KOH} & \textbf{K}_2(\textbf{CH}_3(\textbf{CH}_2)_2\textbf{CH}_2\textbf{SO}_2\textbf{N}=\textbf{CS}_2) \\ \textbf{(1)} & \textbf{DMF} & \textbf{(2)} \\ \textbf{K}_2(\textbf{CH}_3(\textbf{CH}_2)_2\textbf{CH}_2\textbf{SO}_2\textbf{N}=\textbf{CS}_2) & \textbf{ZnSO}_4 & \textbf{[C\'ation]}_2 \left[\textbf{Zn}(\textbf{K}_2(\textbf{CH}_3(\textbf{CH}_2)_2\textbf{CH}_2\textbf{SO}_2\textbf{N}=\textbf{CS}_2)_2\right] \\ \textbf{(2)} & \textbf{MeOH}: \textbf{H}_2\textbf{O} \ \textbf{(1:1)} & \textbf{(3)} \\ \textbf{[C\'ation]Br ou [C\'ation]Cl} \\ \textbf{C\'ations: Bu}_4\textbf{NBr} & \textbf{Bz}(\textbf{Bu})_3\textbf{NCl} & \textbf{Bu}_4\textbf{PBr} & \textbf{Bu}(\textbf{Ph})_3\textbf{PBr} \\ \textbf{A} & \textbf{B} & \textbf{C} & \textbf{D} \\ \hline \\ \textbf{Disco contendo mic\'elio} & \textbf{An\'alise do crescimento} \\ \hline \\ \textbf{Meio contendo o composto} & \textbf{3 dias} \\ \hline \\ \hline \end{array}$

Resultados e Discussão

Os compostos foram caracterizados por temperaturas de fusão, espectroscopias vibracional, de RMN de ¹H e ¹³C e apresentam espectros semelhantes. A diferença está apenas na parte catiônica. Os sinais dos cátions fosfônios no RMN de ¹³C aparecem duplicados, devido ao acoplamento carbono-fosfóro. No RMN ¹H, a integração dos hidrogênios está de acordo com a razão 2:1 (cátion:ânion). Foi avaliada a atividade antifúngica dos sais frente a *Rhyzoctonia solani* a 50 e 150 µmolL⁻¹ pelo método *poison food* ^[2].

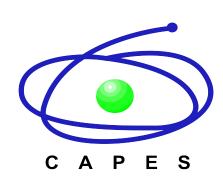
Tabela 1 - Porcentagem de inibição do crescimento micelial de R. solane.

Tratamento -	Concentrações (µmolL ⁻¹)	
	50	150
	Inibição (%)	
3A	25,5 ± 2,1	26,1 ± 1,2
3B	12,4 ± 1,0	18,5 ± 0,5
3C	11,8 ± 0,7	23,9 ± 0,6
3D	14,7 ± 0,4	47,1 ± 1,2

Conclusões

As estruturas propostas foram confirmadas por espectroscopia e os sais apresentaram alto grau de pureza. Todos os sais foram ativos frente a *Rhyzoctonia solani*. A atividade foi mais acentuada para o sal complexo que possui como cátion o butiltrifenilfosfônio (Bu(Ph)₃P⁺), chegando a quase 50 % de inibição a 150 μmolL⁻¹.

Bibliografia


[1] ALVES, L. C., et al., **Journal of Inorganic Chemistry**, p. 1045, v. 22, 2009.

[2] OLIVEIRA, M. R. L., et al., **Polyhedron**, p. 163-168, v. 26, 2007.

Apoio Financeiro

Agradecimentos

