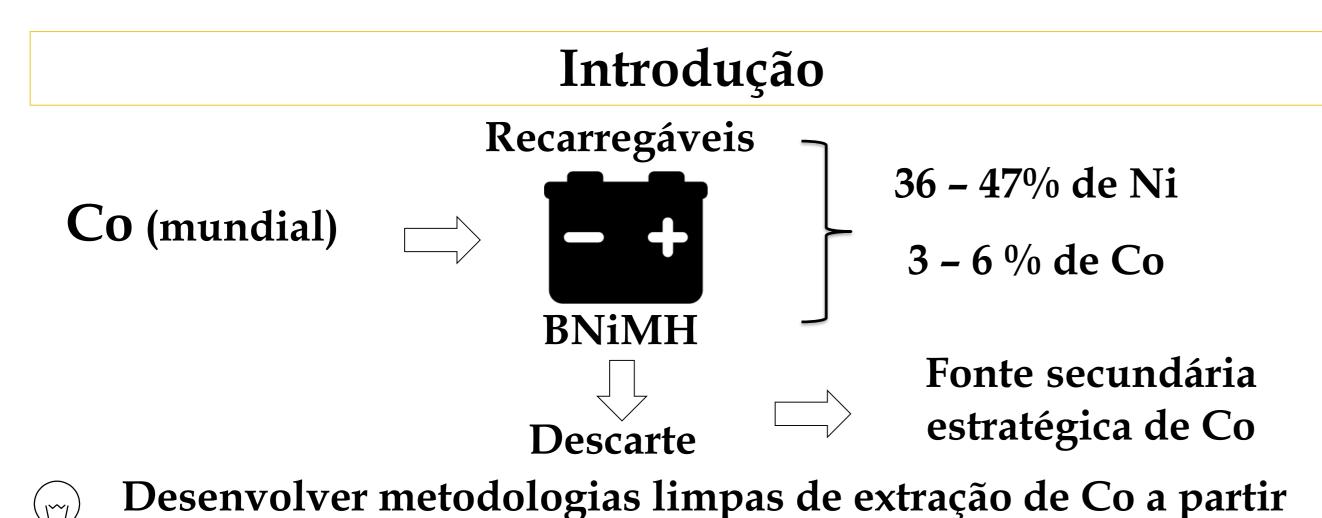


Simpósio de Integração Acadêmica

Inteligência Artificial: A Nova Fronteira da Ciência Brasileira SIA UFV Virtual 2020


RECUPERAÇÃO DE COBALTO A PARTIR DE BATERIA NÍQUEL-METAL HIDRETO UTILIZANDO SISTEMA AQUOSO BIFÁSICO

Grupo de Análises e Educação para a Sustentabilidade (GAES), Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa - MG

Daliane Cláudia de Faria (dalianefaria9@gmail.com) (IC), Jossemyller Ferreira Damascena (IC), Danillo Silva Zacché (mestrando), Maria do Carmo Hespanhol (mcarmohespanhol@gmail.com)(Orientadora)

Cobalto, sistema aquoso bifásico, bateria níquel-metal hidreto (BNiMH), recuperação

Categoria: Pesquisa – Química Analítica

Objetivos

- Estudo de formação de sistema aquoso bifásico (SAB) a partir do lixiviado ácido de BNiMH;
- Investigar a eficiência de lixiviação de BNiMH e extração de Co presente no lixiviado pelo SAB.

Material e Métodos

Lixiviação

• 22,0 g de BNiMH

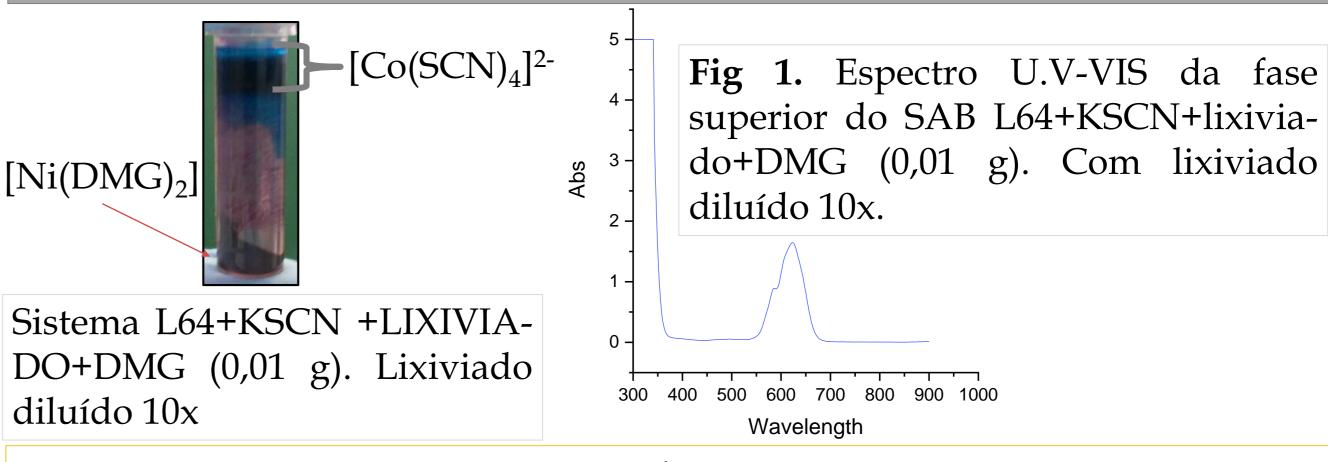
de BNiMH.

- 220 mL de solução de ácido nítrico 4,0 mol L⁻¹
- Peróxido de hidrogênio
 (3%)
- Aquecimento a 95°C por 30 minutos

Formação de SAB

- Massas apropriadas de:
- Lixiviado de BNiMH
- Macromoléculas (PEO 1500, F68, L35 e L64)
- Na presença ou não de KSCN

Resultados e Discussão

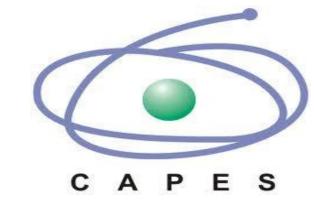

Macromolécula	Formação de SAB na ausência de KSCN	Formação de SAB na presença de KSCN
PEO 1500	Não	Não
F68	Não	Sim
L35	Não	Não
L64	Sim	Sim

No lixiviado foi obtido o teor de Ni (47%) e Co (5,5%), via espectrômetro de emissão atômica com plasma induzido por microondas (MPAES).

L64 é mais hidrofóbica que as demais macromoléculas, induzindo a separação de fases sem a presença de KSCN em pH altamente ácido. Porém, o Co nesse SAB, permanece na fase inferior juntamente com os demais metais.

Nos SAB (F68 ou L64+KSCN+lixiviado), Co + Ni foram extraídos para a fase superior. O SAB contendo L64 possibilita uma extração de Co mais eficiente.

Adicionando dimetilglioxima (DMG) e amônia ao SAB L64+ lixiviado+KSCN, o Ni é precipitado [Ni(DMG)₂], e o Co permanece na fase superior do SAB com maior pureza. Co caracterizado na figura 1.


Conclusões

O SAB L64+lixiviado+KSCN possibilita a obtenção de Co na fase superior do sistema com maior pureza, quando adiciona DMG e amônia ao SAB. O desenvolvimento desta metodologia de extração permitiu a separação de Co, a partir de lixiviado de de bateria NiMH descartada, de forma ambientalmente segura e econômica.

Bibliografia

M. Petranikova, B. Ebin, and C. Tunsu, "Selective recovery of cobalt from the secondary streams after NiMH batteries processing using Cyanex 301," *Waste Manag.*, vol. 83, pp. 194–201, Jan. 2019. N. Schaeffer *et al.*, "Synergistic Aqueous Biphasic Systems: A New Paradigm for the 'one-Pot' Hydrometallurgical Recovery of Critical Metals," *ACS Sustain. Chem. Eng.*, vol. 7, no. 1, pp. 1769–1777, Jan. 2019.

Apoio Financeiro

• • • • • •

