

Programa Analítico de Disciplina

QUI 754 - Fundamentos de Eletroquímica

Departamento de Química - Centro de Ciências Exatas e	e Tecnológicas
Catálogo: 2025	
Número de créditos: 4 Carga horária semestral: 60h Carga horária semanal teórica: 4h Carga horária semanal prática: 0h	Semestres: II

Ementa

Soluções eletrolíticas.

Mecanismos de transporte de massa.

Termodinâmica de interfaces eletroquímicas.

Fundamentos da Cinética eletroquímica

Aspectos da eletroquímica aplicada.

Conteúdo			
nidade	Т	Р	То
 Soluções eletrolíticas. 1.Mecanismos de formação de soluções eletrolíticas. 2.Interações íon-solvente. 3.Modelo de Born e parâmetros termodinâmicos das interações íon-solvente. 4.Interações íon-íon. 5.Teoria de Debye-Hückel e não idealidade de soluções eletrolíticas. 	12h	0h	12
 Mecanismos de transporte de massa. 1.Mecanismos de transporte de massa: difusão, migração e convecção. 2.Condutividade eletrolítica e Lei da Migração Independente dos Íons. 3.Difusão e mobilidade iônica. Leis de Fick. 	6h	Oh	6h
 3. Termodinâmica de interfaces eletroquímicas. 1. Modelos de dupla camada elétrica. 2. Potencial de eletrodo. 3. Eletroquímica do equilíbrio. 	15h	0h	15
 4. Fundamentos da Cinética eletroquímica 1. Reações de eletrodo de uma etapa. 2. Equações de Butler-Volmer e Tafel. 3. Sobrepotenciais de ativação, ôhmico e de transferência de massa. 4. Métodos experimentais para o estudo da cinética eletroquímica. 	15h	0h	15
 5. Aspectos da eletroquímica aplicada. 1. Eletroquímica em processos industriais. 2. Sistemas de geração e armazenamento de energia. 3. Outros dispositivos e processos eletroquímicos. 	12h	0h	12

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: 7UD9.MYGF.YY5D

UNIVERSIDADE FEDERAL DE VIÇOSA PPG | PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

	_		
Total	60h	0h	60h

Teórica (T); Prática (P); Total (To);

QUI 754 - Fundamentos de Eletroquímica

Bibliografias básicas		
Descrição	Exemplares	
LUIS, Antonio Carvalho de Sales. Eletroquimica: experiencias, leis e conceitos fundamentais. [São Paulo, SP]: [s.n.] 82 p.	2	
E.A. Ticianelli e E.R. González – Eletroquímica, Princípios e Aplicações – EDUSP 2ª Edição (2005).	0	
J. O'M. Bockris and A.K.N. Reddy, A.M. Gamboa-Aldeco - Modern electrochemistry, 2nd. Edition – Kluwer/PlenumPress, New York (2000).	0	
E. Gileadi, "Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists", VCH, NY, 1993. (2)	0	
H. G. Hertz, Electrochemistry, a reformulation of the basic principles, Lecture Notes in Chemistry 17, Springer-Verlag, Berlin, Heidelberg, New York 1980. (VIrtual)	0	
PEREZ, Nestor. Electrochemistry and Corrosion Science. 1st ed. 2004. XIII, 362 p. 71 illus ISBN 9781402078606. (Virtual)	0	
LEVINE, Ira N. Físico-química. 6. ed. Rio de Janeiro: LTC, 2012. 2v. ISBN 9788521606345 (v.1).	10	
LEVINE, Ira N. Físico-química. 6. ed. Rio de Janeiro: LTC, 2012. 2v. ISBN 9788521606611 (v.2).	8	
PILLA, Luiz. Físico-química: 2. Rio de Janeiro: LTC, 1980 v.2.	4	

Bibliografias complementares		
Descrição	Exemplares	
ALMEIDA, José Ricardo L; BERGMANN, Nelson. Eletroquimica: caderno de atividades. 2 ed. São Paulo, SP: Harbra, 2012. 184 p.	0	
Raboczkay, T. (2020). Iniciação à Eletroquímica. São Paulo: EDUSP.	0	
PETROVIC, Slobodan. Electrochemistry Crash Course for Engineers. Springer Nature EBook 1st ed. 2021. X, 108 p. ISBN 9783030615628. (Virtual)	0	

Syllabus

QUI 754 - Fundamentals of Electrochemistry

Departamento de Química - Centro de Ciências Exatas e Tecnológicas		
Catalog: 2025		
Number of credits: 4 Total hours: 60h Weekly workload - Theoretical: 4h		
Weekly workload - Practical: 0h	Period: II	

Content

Electrolyte solutions.

Mass transport mechanisms.

Thermodynamics of electrochemical interfaces.

Fundamentals of Electrochemical Kinetics

Aspects of applied electrochemistry.

Course program			
nit	Т	Р	То
1. Electrolyte solutions. 1. Mechanisms of formation of electrolyte solutions. 2. Ion-solvent interactions. 3. Born model and thermodynamic parameters of ion-solvent interactions. 4. Ion-ion interactions. 5. Debye-Hückel theory and non-ideality of electrolyte solutions.	12h	0h	121
 2. Mass transport mechanisms. 1. Mass transport mechanisms: diffusion, migration and convection. 2. Electrolytic conductivity and Law of Independent Migration of Ions. 3. Diffusion and ionic mobility. Fick's Laws. 	6h	Oh	6h
3. Thermodynamics of electrochemical interfaces. 1. Electrical double layer models. 2. Electrode potential. 3. Equilibrium electrochemistry.	15h	Oh	151
4. Fundamentals of Electrochemical Kinetics 1. One-step electrode reactions. 2. Butler-Volmer and Tafel equations. 3. Activation, ohmic and mass transfer overpotentials. 4. Experimental methods for the study of electrochemical kinetics.	15h	Oh	15h
5. Aspects of applied electrochemistry. 1. Electrochemistry in industrial processes. 2. Energy generation and storage systems.	12h	0h	121

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: 7UD9.MYGF.YY5D

UNIVERSIDADE FEDERAL DE VIÇOSA PPG | PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

3.Other electrochemical devices and processes.			
Total	60h	0h	60h

Theoretical (T); Practical (P); Total (To);

QUI 754 - Fundamentals of Electrochemistry

Fundamental references	
Description	Copies
LUIS, Antonio Carvalho de Sales. Eletroquimica: experiencias, leis e conceitos fundamentais. [São Paulo, SP]: [s.n.] 82 p.	2
E.A. Ticianelli e E.R. González – Eletroquímica, Princípios e Aplicações – EDUSP 2ª Edição (2005).	0
J. O'M. Bockris and A.K.N. Reddy, A.M. Gamboa-Aldeco - Modern electrochemistry, 2nd. Edition – Kluwer/PlenumPress, New York (2000).	0
E. Gileadi, "Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists", VCH, NY, 1993. (2)	0
H. G. Hertz, Electrochemistry, a reformulation of the basic principles, Lecture Notes in Chemistry 17, Springer-Verlag, Berlin, Heidelberg, New York 1980. (VIrtual)	0
PEREZ, Nestor. Electrochemistry and Corrosion Science. 1st ed. 2004. XIII, 362 p. 71 illus ISBN 9781402078606. (Virtual)	0
LEVINE, Ira N. Físico-química. 6. ed. Rio de Janeiro: LTC, 2012. 2v. ISBN 9788521606345 (v.1).	10
LEVINE, Ira N. Físico-química. 6. ed. Rio de Janeiro: LTC, 2012. 2v. ISBN 9788521606611 (v.2).	8
PILLA, Luiz. Físico-química: 2. Rio de Janeiro: LTC, 1980 v.2.	4

Complementary references	
Description	Copies
ALMEIDA, José Ricardo L; BERGMANN, Nelson. Eletroquimica: caderno de atividades. 2 ed. São Paulo, SP: Harbra, 2012. 184 p.	0
Raboczkay, T. (2020). Iniciação à Eletroquímica. São Paulo: EDUSP.	0
PETROVIC, Slobodan. Electrochemistry Crash Course for Engineers. Springer Nature EBook 1st ed. 2021. X, 108 p. ISBN 9783030615628. (Virtual)	0