

Programa Analítico de Disciplina

INF 630 - Projeto e Análise de Algoritmos

Departamento de Informática - Centro de Ciência	as Exatas e Tecnológicas	
Catálogo: 2025		
Número de créditos: 4 Carga horária semestral: 60h Carga horária semanal teórica: 4h		
Carga horária semanal prática: Oh	Samastras: La II	

Ementa

Princípios matemáticos para análise de algoritmos Análise da complexidade Principais paradigmas de projeto de algoritmos NP-Completude Limites inferiores Algoritmos aproximados

Conteúdo			
nidade	Т	Р	То
1. Princípios matemáticos para análise de algoritmos 1. Notação assintótica e crescimento de funções 2. Resolução de recorrências 3. Teorema mestre	8h	0h	8h
2. Análise da complexidade 1. Análise de pior caso, melhor caso e caso médio 2. Classes de eficiência 3. Análise de algoritmos iterativos 4. Análise de algoritmos recursivos 5. Análise de complexidade das principais estruturas de dados	10h	Oh	101
3. Principais paradigmas de projeto de algoritmos 1. Indução, paradigma incremental 2. Busca exaustiva e backtracking 3. Guloso (ganancioso) 4. Divisão e conquista 5. Programação Dinâmica 6. Principais problemas e algoritmos em grafos	26h	Oh	26
4.NP-Completude 1.Classes P e NP 2.Reduções de problemas 3.Classe NP-Completo 4.Classe NP-Difícil	6h	0h	6h
5. Limites inferiores	4h	0h	4h

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: D5R5.QZOY.HDKO

UNIVERSIDADE FEDERAL DE VIÇOSA PPG | PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

1.Limites inferiores para problemas				
6. Algoritmos aproximados 1. Algoritmos aproximados para solução de problemas NP-Difíceis		6h	0h	6h
	Total	60h	0h	60h

Teórica (T); Prática (P); Total (To);

INF 630 - Projeto e Análise de Algoritmos

Bibliografias básicas	
Descrição	Exemplares
LEVITIN, A. Introduction to the design and analysis of algorithms, Pearson, 3rd ed, 2011.	0
MANBER, U., Introduction to Algorithms: a Creative Approach, Addison-Wesley, 1989.	0
CORMEM, T. H., LEISERSON, C. E., RIVEST, R. L., Algoritmos - Teoria e Prática, 3ª Edição, Campus, 2012	3

Bibliografias complementares		
Descrição	Exemplares	
KLEINBERG, J., TARDOS, É., Algorithm Design, Pearson, 2005	0	
HOROWITZ, E., SAHNI, S., RAJASEKARAN, S., Computer Algorithms in C++, 2nd Edition, Silicon Press, 2007	0	
HOROWITZ, E; SAHNI, S.; RAJASEKARAN, S Computer algorithms. New York: Computer Science Press, 1997.	2	

Syllabus

INF 630 - Design and Analysis of Algorithms

Departamento de Informática - Centro de Ciências Exata	as e Tecnológicas
Catalog: 2025	
Number of credits: 4 Total hours: 60h Wookly workload. Theoretical: 4h	
Weekly workload - Practical: 4h Weekly workload - Practical: 0h	 Period: Le II

Content

Main algorithm design paradigms
Mathematical principles for algorithm analysis
Complexity analysis
NP-Completeness
Lower bounds
Approximation algorithms

Course program			
it	Т	Р	То
1.Mathematical principles for algorithm analysis	8h	0h	8h
 Asymptotic notation and orders of growth 			
2. Solving recurrences			
3. Master theorem			
2.Complexity analysis	10h	0h	10
1. Worst-case, best-case, and average-case analysis			
2. Efficiency classes			
3. Analysis of iterative algorithms			
4. Analysis of recursive algorithms			
Complexity analysis of the main data structures			
3.Main algorithm design paradigms	26h	0h	26
1.Induction, incremental paradigm			
2. Exhaustive search and backtracking			
3. Greedy algorithm			
4. Divide and Conquer			
5. Dynamic Programming			
6. Classical graph problems and algorithms			
4.NP-Completeness	6h	0h	6h
1.P and NP classes			
2. Problem reductions			
3.NP-Complete class			
4.NP-Hard class			
5.Lower bounds	4h	0h	4h

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: D5R5.QZOY.HDKO

UNIVERSIDADE FEDERAL DE VIÇOSA PPG | PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

1.Lower bounds for problems			
6. Approximation algorithms 1. Approximation algorithms for solving NP-Hard problems	6h	0h	6h
Total	60h	0h	60h

Theoretical (T); Practical (P); Total (To);

INF 630 - Design and Analysis of Algorithms

Fundamental references		
Description	Copies	
LEVITIN, A. Introduction to the design and analysis of algorithms, Pearson, 3rd ed, 2011.	0	
MANBER, U., Introduction to Algorithms: a Creative Approach, Addison-Wesley, 1989.	0	
CORMEM, T. H., LEISERSON, C. E., RIVEST, R. L., Algoritmos - Teoria e Practical, 3ª Edição, Campus, 2012	3	

Complementary references		
Description	Copies	
KLEINBERG, J., TARDOS, É., Algorithm Design, Pearson, 2005	0	
HOROWITZ, E., SAHNI, S., RAJASEKARAN, S., Computer Algorithms in C++, 2nd Edition, Silicon Press, 2007	0	
HOROWITZ, E; SAHNI, S.; RAJASEKARAN, S Computer algorithms. New York: Computer Science Press, 1997.	2	