

Programa Analítico de Disciplina

INF 251 - Organização de Computadores I

Departamento de Informática - Centro de Ciências Exatas e Tecnológicas

Catálogo: 2023

Número de créditos: 6

Carga horária semestral: 90h Carga horária semanal teórica: 4h Carga horária semanal prática: 2h Carga horária de extensão: 0h

Semestres: II

Objetivos

Apresentar os conceitos de Algebra Booleana, projetos de circuitos digitais e processadores, que constituem a base para compreensão do hardware.

Ementa

História dos sistemas digitais. Sistemas de numeração. Codificação. Álgebra de Booleana. Métodos de minimização. Blocos combinacionais. Aritmética binária. Flip-flops e registradores. Memória. Circuitos seqüenciais. Linguagem Assembler. Microprogramação. Linguagens de descrição de hardware.

Pré e correquisitos

INF 112 ou (ELT 312 e INF 100)

Oferecimentos obrigatórios

Não definidos

Oferecimentos optativos

Não definidos

INF 251 - Organização de Computadores I

Conteúdo					
Jnidade	Т	Р	ED	Pj	To
1. História dos sistemas digitais 1. Evolução das tecnologias 2. Níveis de abstração 3. Descrição estrutural e comportamental 4. Organização e arquitetura de computadores	2h	Oh	0h	0h	2h
2. Sistemas de numeração 1. Conceito digital e analógico 2. Processo de digitalização 3. Base binário, octal, hexadecimal 4. Conversão de base	2h	Oh	0h	0h	2h
3. Codificação 1. Código Binário 2. Código BCD 3. Código ASCII 4. Diferença de codificação e criptografia 5. Conceitos de detecção e correção de erros	2h	Oh	0h	0h	2h
4. Álgebra de Booleana 1. Operações lógicas 2. Portas 3. Tabelas-verdade 4. Análise e síntese 5. Formas canônicas de funções 6. Soma de produtos e produtos soma 7. NAND e NOR 8. Teorema de DeMorgan 9. Funções de múltiplas saídas	4h	Oh	Oh	Oh	41
5. Métodos de minimização 1. Mapas de Karnaugh 2. Implicantes primos 3. Métodos formais 4. Lógica dos níveis e multi-nível 5. Ferramentas de síntese	6h	0h	0h	0h	6h
6. Blocos combinacionais 1. Decodificadores 2. Codificadores e multiplexadores 3. Implementação de lógica com MUX	2h	0h	Oh	Oh	2h
7. Aritmética binária 1. Implementação, soma binária 2. Representação com sinal 3. Complemento de dois 4. Subtração 5. Somadores em cascata e cai-um antecipado (look-ahead) 6. Subtratores 7. Comparadores	4h	0h	Oh	0h	4h

 $A \ autenticidade \ deste \ documento \ pode \ ser \ conferida \ no \ site \ \underline{https://siadoc.ufv.br/validar-documento} \ com \ o \ c\'odigo: \ P2NJ.8H9R.SGAS$

8. Flip-flops e registradores 1. Rs 2. Tipo d 3. Sincronismo 4. Jk 5. Registradores 6. Deslocamento	4h	Oh	Oh	0h	4h
7. Contadores síncronos e assíncronos					
9. Memória 1. Barramento e tri-state 2. Decodificação 3. Concepção em módulos 4. Lógica associativa 5. Tipos básicos de cache	6h	Oh	Oh	0h	6h
10. Circuitos seqüenciais 1. Modelo de máquina de estado 2. Diagrama de estado 3. Técnicas de Codificação e Minimização 4. Implementação Física	6h	0h	0h	0h	6h
11. Linguagem Assembler 1. Ciclo busca, decodifica e executa 2. Programação em assembler 3. Instruções: tipo de formatos 4. Modos de endereçamento 5. Chamada de rotinas 6. Interrupções	8h	0h	Oh	0h	8h
12. Microprogramação 1. Implementação 2. Hardwired, risc, datapht e unidade de controle	8h	0h	0h	0h	8h
13. Linguagens de descrição de hardware 1.Abordagem com C, VHDL e VERILOG 2.Síntese Lógica	6h	0h	0h	0h	6h
14. Portas lógicas 1. Teste de circuitos básicos com portas lógicas AND, OR, XOR, NOT, NAND, NOR 2. Montagem de um circuito XOR com portas NAND 3. Simulação e montagem em protoboard	Oh	2h	0h	0h	2h
15. Álgebra de Boole 1.Síntese de um sistema de alarme 2.Minimização com karnaugh 3.Simulação e montagem em protoboard	0h	2h	0h	0h	2h
16. Circuitos combinacionais 1. Síntese de um circuito em dois níveis e multinível com ferramentas (espresso e sis) 2. Simulação	0h	2h	0h	0h	2h
17. Circuitos aritméticos I 1.Montagem de somador 2-bits 2.Protoboard e simulação	0h	2h	0h	0h	2h

 $A \ autenticidade \ deste \ documento \ pode \ ser \ conferida \ no \ site \ \underline{https://siadoc.ufv.br/validar-documento} \ com \ o \ c\'odigo: \ P2NJ.8H9R.SGAS$

18. Circuitos aritméticos II 1. Simulação de um somador-subtrator 4bits 2. Simulação de um somador look-ahead	0h	2h	0h	0h	2h
19. Projeto de uma ALU modular		2h	0h	0h	2h
20.Flip-Flop RS, Tipo D e JK		2h	0h	0h	2h
21. Registrador de deslocamento 1.Conversão Serial/Paralelo	0h	2h	0h	0h	2h
22. Memória 1. Endereçamento, ciclo de leitura, ciclo de escrita, montagem modular	0h	2h	0h	0h	2h
23.Implementação de uma máquina de estados	0h	2h	0h	0h	2h
24. Projeto de comunicação com detecção e correção de erros	0h	2h	0h	0h	2h
25. Projeto de um sistema com barramentos	0h	2h	0h	0h	2h
26. Projeto de uma cache	0h	2h	0h	0h	2h
27.Projeto de um datapath e de uma unidade de controle	0h	2h	0h	0h	2h
28. Projeto para introdução da técnica de pipeline	0h	2h	0h	0h	2h
Total	60h	30h	0h	0h	90h

Teórica (T); Prática (P); Estudo Dirigido (ED); Projeto (Pj); Total (To);

Planejamento pedagógico					
Carga horária	Itens				
Teórica	Apresentação de conteúdo oral e escrito com o apoio de equipamento (projetor, quadro-digital, TV, outros)				
Prática	Prática executada por todos os estudantes				
Estudo Dirigido	Não definidos				
Projeto	Não definidos				
Recursos auxiliares	Não definidos				

INF 251 - Organização de Computadores I

Bibliografias básicas

Não definidas

Bibliografias complementares					
Descrição					
ERCEGOVAC, M.; LANG, T.; MORENO, J.H. Introdução aos Sistemas Digitais. Bookman, 2000.	0				
HAYES, J.P. Introduction to Digital Logic Design. New York: Editora Addison-Wesley, 1993.	1				
HENNESSY, J.L.; PATTERSON, D.A. Computer organization and design: the hardware/software interface; 4 ^a ed. Morgan Kaufmann, 2011,pp914	6				
IDOETA, I.; CAPUANO, F.G. Elementos de eletrônica digital, 3ª ed., São Paulo: Livros Erica, 1982, 504p.	0				
KATZ, R. Contemporary Logic Design. Benjamin/Cummings, 1994.	1				
LOURENÇO, A.C. Sistemas numéricos e álgebra booleana. São Paulo: Érica, 1994, 90p.	0				
MANO, M. Digital Design. New York: Editora Prentice-Hall International, 2ª edição, 1991.	2				
TAUB, H. Circuitos Digitais e Microprocessadores. São Paulo: Editora McGraw-Hill do Brasil, 1984.	1				
TANENBAUM, A.S. Organização estruturada de computadores. Rio de Janeiro: Prentice-Hall do Brasil, c1992, 460p.	20				
TOKHEIM, R.L. Princípios digitais, São Paulo: McGraw-Hill, 256p.(Coleção Schaum).	0				