

Programa Analítico de Disciplina

SIN 252 - Arquitetura de Computadores

Campus Rio Paranaíba -

Catálogo: 2022

Número de créditos: 4 Carga horária semestral: 60h Carga horária semanal teórica: 4h Carga horária semanal prática: 0h

Semestres: II

Objetivos

- Compreender como os programas escritos em uma linguagem de alto nível, como C ou Java, são traduzidos para a linguagem de máquina e como o hardware executa os programas resultantes.
- Entender o que é a interface entre o hardware e o software, o como o software instrui o hardware a realizar as funções necessárias.
- Compreender o que determina o desempenho de um programa e como um programador pode melhorar o desempenho.
- Conhecer quais técnicas podem ser utilizadas pelos projetistas de hardware para melhorar o desempenho

Ementa

Conceito de arquitetura de computadores. Conjunto de instruções e programação em Assembly. Avaliação de desempenho. O caminho de dados. Pipelining. Hierarquia de memórias. Sistemas de E/S. Tópicos em arquitetura de computadores.

Pré e correquisitos	
SIN 251	

Oferecimentos obrigatórios				
Curso	Período			
Sistemas de Informação	4			

Oferecimentos optativos	
Não definidos	

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: 9QQO.JYE8.C4MY

SIN 252 - Arquitetura de Computadores

Conteúdo						
nidade	Т	Р	ED	Pj	Тс	
1. Conceito de arquitetura de computadores 1. Abstração em um Sistema de Computação 2. Hardware / software 3. Risc vs. Cisc	4h	0h	Oh	0h	4h	
2.Conjunto de instruções e programação em Assembly 1.Arquitetura do Conjunto de Instruções 2.Conjunto de Instruções e assembly do MIPS 32 3.Instruções lógicas e aritméticas 4.Instruções de movimentação de dados 5.Instruções de desvios 6.Assembly do MIPS 32 7.Funções em Assembly do MIPS 1.Conjunto de Instruções e linguagem assembly de arq. x86	16h	0h	Oh	0h	16	
3. Avaliação de desempenho 1. Definindo desempenho 2. Vazão VS. Tempo de resposta 3. Medidas de desempenho considerando o clock 4. Ciclos de clock por instrução (CPI) 5. Equação do desempenho 6. Fatores que influenciam no desempenho 7. Otimização do desempenho 1. Comparação de desempenho	8h	Oh	Oh	Oh	81	
4.0 caminho de dados 1.Conceitos de caminho de dados e controle (CPU) 2.Caminho de dados e Controle do MIPS Monociclo 3.Caminho de dados e Controle do MIPS Multiciclo 4.Exemplo de um caminho de dados e controle x86	8h	0h	0h	0h	8h	
 5. Pipelining 1. Aumentando o desempenho com pipelining 2. Hazards 3. Hazards estruturais e soluções 4. Hazards de Dados; Stalls e encaminhamento 5. Hazards de Controle; Previsão de desvios (estático e dinâmico) 6. Avaliação de desempenho em arquiteturas pipelining 7. Superescalar 1. Pipelining em arq. X86 	8h	Oh	Oh	Oh	8h	
6. Hierarquia de memórias 1. Hierarquia de memórias 2. Memória cachê 3. Mapeamento direto 4. Mapeamento associativo 5. Tratando falhas 6. Memória virtual	6h	Oh	Oh	Oh	6h	

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: 9OQO.JYE8.C4MY

7.Segmentação 1.Tabela de páginas 2.TLB 8.Tratamento de falhas						
7. Sistemas de E/S 1.Barramentos 2.DMA 3.Tecnologias de armazenamento		6h	0h	0h	0h	6h
8. Tópicos em arquitetura de computadores 1.Máquinas paralelas: Multiprocessadores e vetoriais 2.Redes de interconexão 3.Arquiteturas reconfiguráveis (FPGAs)		4h	0h	0h	0h	4h
	Total	60h	0h	0h	0h	60h

Teórica (T); Prática (P); Estudo Dirigido (ED); Projeto (Pj); Total (To);

Planejamento pedagógico				
Carga horária	Itens			
Teórica	Apresentação de conteúdo oral e escrito com o apoio de equipamento (projetor, quadro-digital, TV, outros)			
Prática	Não definidos			
Estudo Dirigido	Resolução de problemas			
Projeto	Não definidos			
Recursos auxiliares	Não definidos			

SIN 252 - Arquitetura de Computadores

Bibliografias básicas				
Descrição	Exemplares			
HENNESSY, J.L.; PATTERSON, D.A. Arquitetura de computadores: uma abordagem quantitativa. 4. ed. Rio de Janeiro: Elsevier, 2008.	17			
PATTERSON, D.A.; HENNESSY, J.L. Organização e Arquitetura de computadores: a interface hardware/software. 3. ed. Rio de Janeiro: Elsevier, 2005.	20			
STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 5. ed. São Paulo: Prentice Hall, 2002.	20			

Bibliografias complementares				
Descrição	Exemplares			
DÁMORE, R. VHDL - Descrição e Síntese de Circuitos Digitais. LTC, 2005.	3			
HEURING, V.P.; MURDOCCA, M.J. Introdução a Arquitetura de Computadores. 1.ed. Campus, 2001.	2			
MANO, M.M.; KIME, C.R. Logic and computer design fundamentals. 4. ed. Prentice Hall, 2007.	5			
MONTEIRO, M.A. Introdução à organização de computadores. 5. ed. Rio de Janeiro: LTC, 2007.	3			
TANENBAUM, A.S. Organização estruturada de computadores. 5. ed. São Paulo: Prentice Hall, 2007.	17			
TOCCI, R.; WIDMER, N.S.; MOSS, G. Sistemas digitais: princípios e aplicações. 10. ed. Prentice Hall, 2007.	10			
WEBER, R.F. Fundamentos De Arquitetura de Computadores. 3. ed. Bookman, 2008.	2			