

Programa Analítico de Disciplina

QMF 324 - Química Inorgânica II

Campus UFV - Florestal -

Catálogo: 2019

Número de créditos: 4 Carga horária semestral: 60h Carga horária semanal teórica: 4h Carga horária semanal prática: 0h

Semestres: I

Objetivos

- Utilizar as teorias de ligações (TLV, TCC e TOM) na identificação da estrutura e propriedades magnéticas de compostos de coordenação. - Utilizar as teorias TCC e TOM na identificação dos diversos tipos de transições eletrônicas em complexos de metais de transição e compostos organometálicos. - Prever a geometria/estrutura e propriedades eletrônicas de compostos organometálicos utilizando a Regra dos 18 elétrons e a teoria TOM. - Identificar os diferentes tipos de catálise (homogênea e heterogênea) e os principais ciclos catalíticos. - Ter conhecimento amplo da química dos elementos de transição da tabela periódica bem como seus compostos. - Desenvolver nos alunos a habilidade de reconhecer as características mais importantes de cada teoria discutida em aula, identificando os potenciais e limitações das mesmas na explicação da reatividade dos compostos de coordenação; - Ampliar a capacidade dos estudantes de buscar informações na literatura química, como livros didáticos e periódicos, que podem estar representadas na forma escrita, tabelas e gráficos.

Ementa

Introdução a Algumas Técnicas Aplicadas à Caracterização de Compostos de Coordenação. Introdução ao Estudo de Complexos. Estudo Sistemático de Alguns Metais de Transição. Organometálicos. Catálise.

Pré e co-requisitos

QMF 124 e QMF 125

Oferecimentos obrigatórios			
Curso	Período		
Química	3		

Oferecimentos optativos
Não definidos

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: MY1A.X3MV.TZJB

QMF 324 - Química Inorgânica II

Conteúdo					
iidade	Т	Р	ED	Pj	То
1.Introdução a Algumas Técnicas Aplicadas à Caracterização Compostos de Coordenação 1.Espectrometria na região do infravermelho 2.Espectrometria na região do ultravioleta-visível 3.Termogravimetria 4.Condutimetria	de 4h	Oh	0h	Oh	4h
2.Introdução ao Estudo de Complexos 1.Revisão: Química de coordenação 2.Ligação química nos complexos dos metais de transição 3.Energia de estabilização do campo cristalino 4.Teoria da ligação valência 5.Teoria do campo cristalino-complexos octaédricos 6.Determinação experimental de 10 Dq 7.Fatores que influenciam na magnitude de 10 Dq 8.Série espectroquímica 9.Complexos tetraédricos 10.Distorções tetragonais da geometria octaédrica 11.Complexos quadráticos planos 12.Evidências termodinâmicas e estruturais para a teoria do campo cristalino e considerações finais 13.Teoria do Campo Ligante		Oh	Oh	Oh	20
3. Estudo Sistemático de Alguns Metais de Transição 1. Metais de transição: Características gerais 2. Estudo sistemático de alguns metais de transição e seus compostos 3. Cromo, molibdênio e tungstênio 4. Manganês 5. Ferro, rutênio 6. Níquel, paládio e platina 7. Cobre, prata, ouro 8. zinco, cadmio e mercúrio	10h	Oh	Oh	Oh	10
4. Organometálicos 1. Classificação e propriedades dos compostos organomete 2. Nomenclatura 3. Regra dos 18 elétrons 4. Os Ligantes 5. Monóxido de carbono 6. Fosfinas 7. Complexos de hidreto e de di-hidrogênio 8. Ligantes ?1-alquinil, ?1-alquinil e ?1-aril 9. Ligantes ?2-alqueno e ?2-alquino 10. Ligantes dieno e polienos não-conjugados 11. Dinitrogênio e monóxido de nitrogênio 12. Butadieno, ciclobutadieno e ciclooctatetraeno 13. Benzeno e outros arenos 14. O ligante alila	álicos 13h	Oh	Oh	Oh	13

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: MY1A.X3MV.TZJB

12.Catálise heterogênea 13.A natureza dos catalisadores heterogêneos 14.Hidrogenação de alquenos 15.Síntese de amônia 16.Oxidação do dióxido de enxofre 17.Interconversão de aromáticos por zeólitas 18.Síntese de Fischer-Tropsch 19.Polimerização de alquenos					
 5. Hidrogenação de alquenos 6. Hidroformilação 7. Carbonilação do metanol: síntese do ácido etanoico 8. Oxidação de Wacker de alquenos 9. Metátese de alquenos 10. Reações de formação de ligação C?C catalisadas por paládio 11. Oxidações assimétricas 					
5. Catálise 1.1- Princípios gerais 2.2- Introdução 3. Catalisadores homogêneos e heterogêneos 4. Catálise Homogênea	13h	0h	0h	Oh	131
 15. Ciclopentadieno e ciclo-heptatrieno 16. Carbenos 17. Clusters 18. Caracterização dos compostos organometálicos 19. Aplicações de Organometálicos: metátese, dimerização, oligomerização e polimerização de alquenos, ativação de CO, CO2 e CH, materiais e polímeros organometálicos 20. Reações 					

(T)Teórica; (P)Prática; (ED)Estudo Dirigido; (Pj)Projeto; Total(To)

Planejamento pedagógico				
Carga horária	Itens			
Teórica	Apresentação de conteúdo oral e escrito com o apoio de equipamento (projetor, quadro-digital, TV, outros); Apresentação de conteúdo oral e escrito em quadro convencional; Apresentação de conteúdo pelos estudantes, mediado pelo professor; Apresentação de conteúdo utilizando aprendizado ativo; Debate mediado pelo professor; e Seminários			
Prática	Não definidos			
Estudo Dirigido	Estudo dirigido e Resolução de problemas			
Projeto	Não definidos			
Recursos auxiliares	Não definidos			

QMF 324 - Química Inorgânica II

Bibliografias básicas		
Descrição	Exemplares	
FARIAS, R. F.; Química de Coordenação: Fundamentos e atualidades, editora átomo, 2ª edição, 2009, 424p.	4	
LEE, J. D.; Química Inorgânica não tão Concisa - Tradução da 5ª Edição Inglesa, Edgard Blucher Ltda, 1999	7	
SHRIVER, D. F.; and ATKINS P, W.; Química Inorgânica, 4a edição, editora Bookman, 2008.	4	
HOUSECROFT, C. E.; SHARPE A. G.; Química Inorgânica, 4a edição, editora LTC, 2012, v.1 e V2.	14	

Bibliografias complementares			
Descrição			
BROWN, T. L.; LEMAY, H. E.; BURSTEN, B, E.; BURDGE, J. R.; Química: a ciência central. 9. ed. São Paulo: Person Education, 2007.	25		
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.; Advanced Inorganic Chemistry, 6th Ed., Wiley-Interscience, USA, 1999. 1355p	2		
HUHEEY, J.E; Inorganic chemistry, principles of structure and reactivity, 3 ^a ed. New York: Harper and Row, 1983, 936p.	2		
KOTZ, J. C.; TREICHEL J. P; WEAVER, G. C.; Química geral e reações químicas. 6. ed. Rio de Janeiro: editora CENGAGE Learnig, 2010, v.1 (708p.) e v.2 (512p.).	44		
RUSSEL, John Blair. Química Geral. 2ed. São Paulo: Makron Books, 2008. v.1 e v.2.	16		
TOMA, Henrique E. Química de coordenação, organometálica e catálise: Henrique E. Toma. São Paulo: Blucher, 2013. 338 p	5		